A Multidecadal Analysis of Föhn Winds over Larsen C Ice Shelf from a Combination of Observations and Modeling
Abstract
:1. Introduction
2. Methods
2.1. Automatic Weather Station
2.2. Regional Climate Model RACMO2
2.3. Föhn Identification
- Wind direction at the surface must be southwesterly (225°) to northerly (0°).
- Wind speed at the AWS location surface must exceed 4 m s−1.
- A föhn event must last at least 3 h (two consecutive data points must meet Criteria 1 and 2).
2.4. Climate Index
3. Results and Discussion
3.1. Observational Föhn Characteristics
3.2. RACMO2 Model Evaluation
3.3. Temporal Variability of Föhn Occurrence at CI
3.4. Spatial Impact of Föhn in the AP
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rott, H.; Skvarca, P.; Nagler, T. Rapid collapse of northern Larsen ice shelf, Antarctica. Science 1996, 271, 788–792. [Google Scholar] [CrossRef]
- Scambos, T.A.; Hulbe, C.; Fahnestock, M.; Bohlander, J. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol. 2000, 46, 516–530. [Google Scholar] [CrossRef]
- Cook, A.J.; Vaughan, D.G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 2010, 4, 77–98. [Google Scholar] [CrossRef] [Green Version]
- Dupont, T.K.; Alley, R.B. Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys. Res. Lett. 2005, 32, L022024. [Google Scholar] [CrossRef]
- Scambos, T.A.; Bohlander, J.A.; Shuman, C.U.; Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Rignot, E.; Casassa, G.; Gogineni, P.; Krabill, W.; Rivera, A.U.; Thomas, R. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Wuite, J.; Rott, H.; Hetzenecker, M.; Floricioiu, D.; De Rydt, J.; Gudmundsson, G.H.; Kern, M.; Thomas, N.; Michael, K. Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013. Cryosphere 2015, 9, 957–969. [Google Scholar] [CrossRef] [Green Version]
- Van den Broeke, M. Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Van der Veen, C.J. Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Vaughan, D.G.; Marshall, G.J.; Connolley, W.M.; Parkinson, C.; Mulvaney, R.; Hodgson, D.A.; Turner, J.; King, J.C.; Pudsey, C.J.; Turner, J. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Chang. 2003, 60, 243–274. [Google Scholar] [CrossRef]
- Turner, J.; Colwell, S.R.; Marshall, G.J.; Lachlan-Cope, T.A.; Carleton, A.M.; Jones, P.D.; Lagun, V.; Reid, P.A.; Iagovkina, S. Antarctic climate change during the last 50 years. Int. J. Clim. 2005, 25, 279–294. [Google Scholar] [CrossRef]
- Marshall, G.J.; Orr, A.; van Lipzig, N.P.; King, J.C. The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures. J. Clim. 2006, 19, 5388–5404. [Google Scholar] [CrossRef]
- Marshall, G.J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 2003, 16, 4134–4143. [Google Scholar] [CrossRef]
- Thompson, D.W.; Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 2002, 296, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Kwok, R.; Comiso, J.C. Spatial patterns of variability in Antarctic surface temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation. Geophys. Res. Lett. 2002, 29, L015415. [Google Scholar] [CrossRef]
- Van den Broeke, M.R.; van Lipzig, N.P. Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation. Ann. Glaciol. 2004, 39, 119–126. [Google Scholar] [CrossRef]
- Orr, A.; Cresswell, D.; Marshall, G.J.; Hunt, J.C.; Sommeria, J.; Wang, C.G.; Light, M. A ‘low-level’ explanation for the recent large warming trend over the western Antarctic Peninsula involving blocked winds and changes in zonal circulation. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Orr, A.; Marshall, G.J.; Hunt, J.C.; Sommeria, J.; Wang, C.G.; van Lipzig, N.P.; King, J.C.; Cresswell, D.; King, J.C. Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of westerly circumpolar winds. J. Atmos. Sci. 2008, 65, 1396–1413. [Google Scholar] [CrossRef]
- Cape, M.R.; Vernet, M.; Skvarca, P.; Marinsek, S.; Scambos, T.; Domack, E. Foehn winds link climate-driven warming to ice shelf evolution in Antarctica. J. Geophys. Res. Atmos. 2015, 120. [Google Scholar] [CrossRef]
- Kuipers Munneke, P.; van den Broeke, M.R.; King, J.C.; Gray, T.; Reijmer, C.H. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula. Cryosphere 2012, 6. [Google Scholar] [CrossRef] [Green Version]
- Grosvenor, D.P.; King, J.C.; Choularton, T.W.; Lachlan-Cope, T. Downslope fohn winds over the Antarctic Peninsula and their effect on the Larsen ice shelves. Atmos. Chem. Phys. 2014, 14, 9481–9509. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, A.D.; Renfrew, I.A.; King, J.C.; Orr, A.; Lachlan-Cope, T.A. Foehn warming distributions in nonlinear and linear flow regimes: A focus on the Antarctic Peninsula. Q. J. R. Meteorol. Soc. 2016, 142, 618–631. [Google Scholar] [CrossRef] [Green Version]
- King, J.C.; Kirchgaessner, A.; Bevan, S.; Elvidge, A.D.; Kuipers Munneke, P.; Luckman, A.; van den Broeke, M.R. The impact of föhn winds on surface energy balance during the 2010–11 melt season over Larsen C Ice Shelf, Antarctica. J. Geophys. Res. Atmos. 2017, 122. [Google Scholar] [CrossRef]
- Elvidge, A.D.; Renfrew, I.A.; King, J.C.; Orr, A.; Lachlan-Cope, T.A.; Weeks, M.; Gray, S.L. Foehn jets over the Larsen C ice shelf, Antarctica. Q. J. R. Meteorol. Soc. 2015, 141, 698–713. [Google Scholar] [CrossRef] [Green Version]
- Turton, J.V.; Kirchgaessner, A.; Ross, A.N.; King, J.C. The spatial distribution and temporal variability of föhn winds over the Larsen C Ice Shelf, Antarctica. Q. J. R. Meteorol. Soc. 2018, accepted. [Google Scholar] [CrossRef]
- Smeets, C.J.P.P. Assessing unaspirated temperature measurements using a thermocouple and a physically based model. Mass Budg. Arct. Glaciers 2006, 99, 99–101. [Google Scholar]
- Smeets, C.J.P.P.; Kuipers Munneke, P.; van den Broeke, M.R.; Boot, W.; Oerlemans, J.; Snellen, H.; Reijmer, C.H.; van de Wal, R.S.W. The K-transect in west Greenland: Twenty-three years of automatic weather station data. Arct Antarct. Alp. Res. 2018, in press. [Google Scholar]
- Van Wessem, J.M.; van de Berg, W.J.; Noël, B.P.; van Meijgaard, E.; Birnbaum, G.; Jakobs, C.L.; Medley, B.; Reijmer, C.H.; van Tricht, K.; Trusel, L.D.; et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2, part 2: Antarctica (1979–2016). Cryosph. Discuss. 2017, in press. [Google Scholar] [CrossRef]
- Undén, P.; Rontu, L.; Jarvinen, H.; Lynch, P.; Calvo Sánchez, F.J.; Cats, G.; Jones, C.; Lenderlink, G.; Mcdonald, A.; McGrath, R.; et al. HIRLAM-5 Scientific Documentation; Hirlam: Norrköping, Sweden, 2002. [Google Scholar]
- Reijmer, C.H.; van Meijgaard, E.; van den Broeke, M.R. Evaluation of temperature and wind over Antarctica in a Regional Atmospheric Climate Model using 1 year of automatic weather station data and upper air observations. J. Geophys. Res: Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Ettema, J.; van den Broeke, M.R.; van Meijgaard, E.; van de Berg, W.J. Climate of the Greenland ice sheet using a high-resolution climate model-Part 2: Near-surface climate and energy balance. Cryosphere 2010, 4, 529–544. [Google Scholar] [CrossRef]
- Kuipers Munneke, P.; van den Broeke, M.R.; Lenaerts, J.T.M.; Flanner, M.G.; Gardner, A.S.; van de Berg, W.J. A new albedo parameterization for use in climate models over the Antarctic ice sheet. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Lenaerts, J.T.M.; van den Broeke, M.R.; Déry, S.J.; van Meijgaard, E.; van de Berg, W.J.; Palm, S.P.; Sanz Rodrigo, J. Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Van Wessem, J.M.; Reijmer, C.H.; van de Berg, W.J.; van den Broeke, M.R.; Cook, A.J.; van Ulft, L.H.; van Meijgaard, E. Temperature and wind climate of the antarctic Peninsula as Simulated by a high-resolution regional atmospheric climate model. J. Clim. 2015, 28, 7306–7326. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Bechtold, P.; Beljaars, A.C.M.; van de Berg, L.; Bidlot, J.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Bamber, J.L.; Gomez-Dans, J.L.; Griggs, J.A. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data–Part 1: Data and methods. Cryosphere 2009, 3, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Cook, A.J.; Murray, T.; Luckman, A.; Vaughan, D.G.; Barrand, N.E. A new 100-m Digital Elevation Model of the Antarctic Peninsula derived from ASTER Global DEM: Methods and accuracy assessment. Earth Syst. Sci. Data 2012, 4, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Amundsen Sea Low (ASL) index. Available online: https://legacy.bas.ac.uk/data/absl/ (accessed on 16 November 2017).
- Hosking, J.S.; Orr, A.; Bracegirdle, T.J.; Turner, J. Future circulation changes off West Antarctica: Sensitivity of the Amundsen Sea Low to projected anthropogenic forcing. Geophys. Res. Lett. 2016, 43, 367–376. [Google Scholar] [CrossRef]
- Speirs, J.C.; McGowan, H.A.; Steinhoff, D.F.; Bromwich, D.H. Regional climate variability driven by foehn winds in the McMurdo Dry Valleys, Antarctica. Int. J. Clim. 2013, 33, 945–958. [Google Scholar] [CrossRef]
- Turner, J.; Chenoli, S.N.; Marshall, G.; Phillips, T.; Orr, A. Strong wind events in the Antarctic. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Lu, H.; White, I.; King, J.C.; Phillips, T.; Hosking, J.S.; Bracegirdle, T.J.; Marshall, G.J.; Mulvaney, R.; Deb, P. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 2016, 535, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Dataset from iWS 18 in Cabinet Inlet, Larsen C Ice Shelf, Antarctica, 2014–2017. Available online: http://doi.org/10.5285/05c9124b-7119-4d99-8e17-ab754eb3f51c (accessed on 13 October 2017).
Parameters | Unit | All | Föhn | ||
---|---|---|---|---|---|
AWS | RACMO2 | AWS | RACMO2 | ||
Air temperature (2 m) | °C | −11.3 | −10.4 | −2.4 | −2.7 |
Skin temperature | °C | −13.2 | −13.7 | −4.7 | −6.9 |
Relative humidity (2 m) | % | 89.1 | 74.4 | 63.7 | 57.4 |
Wind speed (10 m) | m s−1 | 3.6 | 3.5 | 8.7 | 8.6 |
Wind direction | ° | 279 | 268 | 300 | 307 |
Parameters | Unit | ME | RMSE | r | r2 |
---|---|---|---|---|---|
Air temperature (2 m) | °C | 0.9 | 4.2 | 0.925 | 0.856 |
Specific humidity (2 m) | g kg−1 | 0.0 | 0.4 | 0.931 | 0.843 |
Relative humidity (2 m) | % | −13.6 | 20.9 | 0.520 | 0.270 |
Skin temperature | °C | −0.5 | 4.2 | 0.923 | 0.851 |
Surface pressure | hPa | −1.5 | 2.1 | 0.990 | 0.980 |
Wind speed | m s−1 | −0.1 | 2.4 | 0.766 | 0.587 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiesenekker, J.M.; Kuipers Munneke, P.; Van den Broeke, M.R.; Smeets, C.J.P.P. A Multidecadal Analysis of Föhn Winds over Larsen C Ice Shelf from a Combination of Observations and Modeling. Atmosphere 2018, 9, 172. https://doi.org/10.3390/atmos9050172
Wiesenekker JM, Kuipers Munneke P, Van den Broeke MR, Smeets CJPP. A Multidecadal Analysis of Föhn Winds over Larsen C Ice Shelf from a Combination of Observations and Modeling. Atmosphere. 2018; 9(5):172. https://doi.org/10.3390/atmos9050172
Chicago/Turabian StyleWiesenekker, Jasper M., Peter Kuipers Munneke, Michiel R. Van den Broeke, and C. J. P. Paul Smeets. 2018. "A Multidecadal Analysis of Föhn Winds over Larsen C Ice Shelf from a Combination of Observations and Modeling" Atmosphere 9, no. 5: 172. https://doi.org/10.3390/atmos9050172
APA StyleWiesenekker, J. M., Kuipers Munneke, P., Van den Broeke, M. R., & Smeets, C. J. P. P. (2018). A Multidecadal Analysis of Föhn Winds over Larsen C Ice Shelf from a Combination of Observations and Modeling. Atmosphere, 9(5), 172. https://doi.org/10.3390/atmos9050172