Assessment of Aerosol Radiative Forcing with 1-D Radiative Transfer Modeling in the U. S. South-East
Abstract
:1. Introduction
2. Experiments
2.1. Methodology for Optical and Radiative Transfer Modeling
2.2. Optical Modeling Using Mie Theory
2.3. Radiative Transfer Modeling Using Santa Barbara Disort Atmospheric Radiative Transfer (SBDART)
2.4. Vertical Profile Analysis of CALIPSO Data
3. Results
3.1. Analysis of Optical Modeling Results of South-Eastern U.S. Aerosols
3.2. Analysis of Modeled Radiative Forcing
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carlton, A.G.; de Gouw, J.; Jimenez, J.L.; Ambrose, J.L.; Attwood, A.R.; Brown, S.; Baker, K.R.; Brock, C.; Cohen, R.C.; Edgerton, S.; et al. Synthesis of the southeast atmosphere studies: Investigating fundamental atmospheric chemistry questions. Bull. Am. Meteorol. Soc. 2018, 99, 547–567. [Google Scholar] [CrossRef]
- Edgerton, E.S.; Hartsell, B.E.; Saylor, R.D.; Jansen, J.J.; Hansen, D.A.; Hidy, G.M. The southeastern aerosol research and characterization study, part 3: Continuous measurements of fine particulate matter mass and composition. J. Air Waste Manag. 2006, 56, 1325–1341. [Google Scholar] [CrossRef]
- Carrico, C.M.; Bergin, M.H.; Xu, J.; Baumann, K.; Maring, H. Urban aerosol radiative properties: Measurements during the 1999 Atlanta Supersite Experiment. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Carlton, A.; Cohen, R.C.; Brune, W.H.; Brown, S.S.; Wolfe, G.M.; Jimenez, J.L.; Pye, H.O.T.; Lee Ng, N.; Xu, L.; et al. Southeast atmosphere studies: Learning from model-observation syntheses. Atmos. Chem Phys. 2018, 18, 2615–2651. [Google Scholar] [CrossRef] [PubMed]
- Alston, E.J.; Sokolik, I.N. A first-order assessment of direct aerosol radiative effect in the southeastern U.S. Using over a decade long multisatellite data record. Air Soil Water Res. 2016, 9. [Google Scholar] [CrossRef]
- Benas, N.; Hatzianastassiou, N.; Matsoukas, C.; Fotiadi, A.; Mihalopoulos, N.; Vardavas, I. Aerosol shortwave direct radiative effect and forcing based on MODIS Level 2 data in the Eastern Mediterranean (Crete). Atmos. Chem. Phys. 2011, 11, 12647–12662. [Google Scholar] [CrossRef] [Green Version]
- Menon, S.; Akbari, H.; Mahanama, S.; Sednev, I.; Levinson, R. Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets. Environ. Res. Lett. 2010, 5, 014005. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The collection 6 modis aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Am. Meteorol. Soc. 1998, 79, 2101–2114. [Google Scholar] [CrossRef]
- Butler, A.J.; Andrew, M.S.; Russell, A.G. Daily sampling of PM2.5 in Atlanta: Results of the first year of the assessment of spatial aerosol composition in Atlanta study. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Edgerton, E.S.; Hartsell, B.E.; Saylor, R.D.; Jansen, J.J.; Hansen, D.A.; Hidy, G.M. The southeastern aerosol research and characterization study: Part II. Filter-based measurements of fine and coarse particulate matter mass and composition. J. Air Waste Manag. 2005, 55, 1527–1542. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Wang, J.; Martin, S.T. Satellite characterization of urban aerosols: Importance of including hygroscopicity and mixing state in the retrieval algorithms. J. Geophys. Res. 2007, 112, D17203. [Google Scholar] [CrossRef]
- Lesins, G.; Chylek, P.; Lohmann, U. A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing. J. Geophys. Res. 2002, 107, 4094. [Google Scholar] [CrossRef]
- Christopher, S.A.; Gupta, P.; Nair, U.; Jones, T.J.; Kondragunta, S.; Wu, Y.L.; Hand, J.L.; Zhang, X. Satellite remote sensing and mesoscale modeling of the 2007 Georgia/Florida fires. IEEE J. Sel. Top. App. Rem. Sens. 2009, 2, 163–175. [Google Scholar]
- Hennigan, C.J.; Bergin, M.H.; Russell, A.G.; Nenes, A.; Weber, R.J. Gas/particle partitioning of water-soluble organic aerosol in Atlanta. Atmos. Chem. Phys. 2009, 9, 3613–3628. [Google Scholar] [CrossRef] [Green Version]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Alston, E.J.; Sokolik, I.N.; Kalashnikova, O.V. Characterization of atmospheric aerosol in the US southeast from ground- and space-based measurements over the past decade. Atmos. Meas. Tech. 2012, 5, 1667–1682. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J. Geophys. Res. 2007, 112, D13211. [Google Scholar] [CrossRef]
- Vaughan, M.A.; Powell, K.A.; Kuehn, R.E.; Young, S.A.; Winker, D.M.; Hostetler, C.A.; Hunt, W.H.; Liu, Z.; McGill, M.J.; Getzewich, B.J. Fully automated detection of cloud and aerosol layers in the calipso lidar measurements. J. Atmos. Ocean. Techol. 2009, 26, 2034–2050. [Google Scholar] [CrossRef]
- Goldstein, A.H.; Koven, C.D.; Heald, C.L.; Fung, I.Y. Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States. Proc. Natl. Acad. Sci. USA 2009, 106, 8835–8840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heald, C.L.; Coe, H.; Jimenez, J.L.; Weber, R.J.; Bahreini, R.; Middlebrook, A.M.; Russell, L.M.; Jolleys, M.; Fu, T.M.; Allan, J.D.; et al. Exploring the vertical profile of atmospheric organic aerosol: Comparing 17 aircraft field campaigns with a global model. Atmos. Chem. Phys. Discuss. 2011, 11, 25371–25425. [Google Scholar] [CrossRef]
- Omar, A.H.; Winker, D.M.; Kittaka, C.; Vaughan, M.A.; Liu, Z.; Hu, Y.; Trepte, C.R.; Rogers, R.R.; Ferrare, R.A.; Lee, K.P.; et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean. Techol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Kittaka, C.; Winker, D.M.; Vaughan, M.A.; Omar, A.; Remer, L.A. Intercomparison of column aerosol optical depths from CALIPSO and MODIS-Aqua. Atmos. Meas. Tech. 2011, 4, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, C.L.; Hidy, G.M.; Tanenbaum, S.; Edgerton, E.S. NMOC, ozone, and organic aerosol in the southeastern United States, 1999–2007: 3. Origins of organic aerosol in Atlanta, Georgia, and surrounding areas. Atmos. Environ. 2011, 45, 1291–1302. [Google Scholar] [CrossRef]
- Tombach, I.; Brewer, P. Natural background visibility and regional haze goals in the southeastern United States. J. Air Waste Manag. 2005, 55, 1600–1620. [Google Scholar] [CrossRef]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Tosca, M.; Campbell, J.; Garay, M.; Lolli, S.; Seidel, F.; Marquis, J.; Kalashnikova, O. Attributing accelerated summertime warming in the southeast United States to recent reductions in aerosol burden: Indications from vertically-resolved observations. Remote Sens. 2017, 9, 674. [Google Scholar] [CrossRef]
- Cusworth, D.H.; Mickley, L.J.; Leibensperger, E.M.; Iacono, M.J. Aerosol trends as a potential driver of regional climate in the central united states: Evidence from observations. Atmos. Chem. Phys. 2017, 17, 13559–13572. [Google Scholar] [CrossRef]
- Yu, S.; Alapaty, K.; Mathur, R.; Pleim, J.; Zhang, Y.; Nolte, C.; Eder, B.; Foley, K.; Nagashima, T. Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor. Sci. Rep. 2014, 4, 6929. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Shindell, D.T.; Faluvegi, G.; Pinder, R.W. Potential impact of a us climate policy and air quality regulations on future air quality and climate change. Atmos. Chem. Phys. 2016, 16, 5323–5342. [Google Scholar] [CrossRef]
- Carlton, A.G.; Pinder, R.W.; Bhave, P.V.; Pouliot, G.A. To what extent can biogenic SOA be controlled? Environ. Sci. Technol. 2010, 44, 3376–3380. [Google Scholar] [CrossRef] [PubMed]
Model Cases | ||||||||
---|---|---|---|---|---|---|---|---|
WB (Winter Background) | WU (Winter Urban) | |||||||
Microphysical Properties | BC (Black Carbon) | Organics | Sulfates 75% | Nitrates 75% | BC (Black Carbon) | Organics | Sulfates 75% | Nitrates 75% |
R0 | 0.01188 | 0.0296 | 0.0296 | 0.0296 | 0.0118 | 0.0296 | 0.0296 | 0.0296 |
ln σ | 0.6931 | 0.8065 | 0.8065 | 0.8605 | 0.6931 | 0.8065 | 0.8065 | 0.8065 |
Density (ρ) (g/cm3) | 1.00 | 2.00 | 1.30 | 1.30 | 1.00 | 2.00 | 1.30 | 1.30 |
M* (µg/m3)/cm−3 | 5.98 × 10−5 | 2.81 × 10−5 | 1.83 × 10−3 | 1.83 × 10−3 | 5.98 × 10−5 | 2.81 × 10−3 | 1.83 × 10−3 | 1.83 × 10−3 |
Mass Fraction | 0.0636 | 0.4475 | 0.3359 | 0.1530 | 0.0933 | 0.4443 | 0.2976 | 0.1648 |
Number Fraction | 0.7139 | 0.1067 | 0.1232 | 0.0561 | 0.7915 | 0.0801 | 0.0826 | 0.0457 |
SB (Summer Background) | SU (Summer Urban) | |||||||
Microphysical Properties | BC (Black Carbon) | Organics | Sulfates 90% | Nitrates 90% | BC (Black Carbon) | Organics | Sulfates 90% | Nitrates 90% |
R0 | 0.0118 | 0.0348 | 0.0348 | 0.0348 | 0.0118 | 0.0348 | 0.0348 | 0.0348 |
ln σ | 0.693 | 0.8065 | 0.8065 | 0.8065 | 0.6931 | 0.8065 | 0.8065 | 0.8065 |
Density (ρ) (g/cm3) | 1.00 | 2.00 | 1.18 | 1.18 | 1.00 | 2.00 | 1.18 | 1.18 |
M*(µg/m3)/cm−3 | 5.98 × 10−5 | 6.59 × 10−3 | 4.28 × 10−3 | 4.28 × 10−3 | 5.98 × 10−5 | 6.59 × 10−3 | 4.28 × 10−3 | 4.28 × 10−3 |
Mass Fraction | 0.0330 | 0.3950 | 0.5329 | 0.0392 | 0.0590 | 0.3686 | 0.5426 | 0.0298 |
Number Fraction | 0.7401 | 0.0805 | 0.1671 | 0.0123 | 0.8389 | 0.0475 | 0.1077 | 0.0059 |
SBB (Summer Biomass Burning) | ||||||||
Microphysical Properties | BC (Black Carbon) | Organics | Sulfates 90% | Nitrates 90% | ||||
R0 | 0.011 | 0.0348 | 0.0348 | 0.0348 | ||||
ln σ | 0.693 | 0.8065 | 0.8065 | 0.8065 | ||||
Density (ρ) (g/cm3) | 1.00 | 2.00 | 1.18 | 1.18 | ||||
M* (µg/m3)/cm−3 | 5.98 × 10−5 | 6.59 × 10−3 | 4.28 × 10−3 | 4.28 × 10−3 | ||||
Mass Fraction | 0.0217 | 0.6508 | 0.3037 | 0.0239 | ||||
Number Fraction | 0.6743 | 0.1835 | 0.1319 | 0.0104 | ||||
SALA (Summer Aerosol Layer Aloft)—Layer 1 | SALA—Layer 2 | |||||||
Microphysical Properties | BC (Black Carbon) | Organics | Sulfates 90% | Nitrates 90% | Organics | |||
R0 | 0.0118 | 0.0348 | 0.0348 | 0.0348 | 0.0348 | |||
ln σ | 0.693 | 0.8065 | 0.8065 | 0.8065 | 0.8065 | |||
M* (µg/m3)/cm−3 | 5.98 × 10−5 | 6.59 × 10−3 | 4.28 × 10−3 | 4.28 × 10−3 | 6.59 × 10−3 | |||
Density (ρ) (g/cm3) | 1.00 | 2.00 | 1.18 | 1.18 | 2.00 | |||
Mass Fraction | 0.0330 | 0.3950 | 0.5329 | 0.0392 | 1.00 | |||
Number Fraction | 0.7401 | 0.0805 | 0.1671 | 0.0123 | 1.00 |
Model Cases | ||||||
---|---|---|---|---|---|---|
WBi (Winter Background) | WUi (Winter Urban) | |||||
Microphysical Properties | BC/Sulfates 75% | Organics | Nitrates 75% | BC/Sulfates 75% | Organics | Nitrates 75% |
R0 | 0.0296 | 0.0296 | 0.0296 | 0.0296 | 0.0296 | 0.0296 |
ln σ | 0.8065 | 0.8065 | 0.8605 | 0.8065 | 0.8065 | 0.8065 |
Density (ρ) (g/cm3) | 1.30 | 2.00 | 1.30 | 1.30 | 2.00 | 1.30 |
M* (µg/m3)/cm−3 | 1.83 × 10−3 | 2.81 × 10−3 | 1.83 × 10−3 | 1.83 × 10−3 | 2.81 × 10−3 | 1.83 × 10−3 |
Mass Fraction | 0.3994 | 0.4475 | 0.1530 | 0.3909 | 0.4443 | 0.1648 |
Number Fraction | 0.8371 | 0.1067 | 0.0561 | 0.7915 | 0.8741 | 0.0457 |
SBi (Summer Background) | SUi (Summer Urban) | |||||
Microphysical Properties | BC/Sulfates 90% | Organics | Nitrates 90% | BC/Sulfates 90% | Organics | Nitrates 90% |
R0 | 0.0348 | 0.0348 | 0.0348 | 0.0348 | 0.0348 | 0.0348 |
ln σ | 0.8065 | 0.8065 | 0.8065 | 0.8065 | 0.8065 | 0.8065 |
Density (ρ) (g/cm3) | 1.18 | 2.00 | 1.18 | 1.18 | 2.00 | 1.18 |
M* (µg/m3)/cm−3 | 4.28 × 10−3 | 6.59 × 10−3 | 4.28 × 10−3 | 4.28 × 10−3 | 6.59 × 10−3 | 4.28 × 10−3 |
Mass Fraction | 0.5658 | 0.3950 | 0.0392 | 0.6014 | 0.3686 | 0.0298 |
Number Fraction | 0.9072 | 0.0805 | 0.0123 | 0.9466 | 0.0475 | 0.0059 |
Cases | ||||||
---|---|---|---|---|---|---|
Season | WB/WBi | WU/WUi | SB/SBi | SU/SUi | SBB | SALA |
Mid-Latitude Winter | Mid-Latitude Winter | Mid-Latitude Summer | Mid-Latitude Summer | Mid-Latitude Summer | Mid-Latitude Summer | |
Wavelength min (µm) | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Wavelength max (µm) | 2 | 2 | 2 | 2 | 2 | 2 |
Wavelength increment (µm) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Albedo | 0.12 | 0.12 | 0.15 | 0.15 | 0.15 | 0.15 |
SZA | 50–85 | 50–85 | 10–84 | 10–84 | 10–84 | 10–84 |
AOD550 nm | 0.04 | 0.09 | 0.28 | 0.34 | 0.7 | L1 = 0.04 |
L2 = 0.24 | ||||||
Number of Layers | 1 | 1 | 1 | 1 | 1 | 2 |
Layer Depth (km) | 1 | 1 | 2 | 2 | 2 | 2 |
1 |
Winter | Layer 1 | ||||
---|---|---|---|---|---|
Dates | Time (UTC) | Number of Layers | Layer Bottom (km) | Layer Top (km) | Layer Thickness (km) |
12/1/08 | 18:06 | Attenuated | - | - | - |
12/3/08 | 7:14 | 1 | 0.00 | 1.00 | 1.00 |
12/6/08 | 18:24 | Attenuated | - | - | - |
12/8/08 | 18:12 | 1 | 0.00 | 2.00 | 2.00 |
12/10/08 | 7:20 | 1 | 0.00 | 2.00 | 2.00 |
12/15/08 | 18:18 | 1 | 0.00 | 1.00 | 1.00 |
12/17/08 | 18:05 | < | - | - | - |
12/19/08 | 7:13 | 1 | 0.00 | 1.50 | 1.50 |
12/22/08 | 18:24 | No Aerosols | - | - | - |
12/24/08 | 18:12 | 1 | 0.00 | 1.00 | 1.00 |
12/26/08 | 7:20 | 1 | 0.00 | 1.00 | 1.00 |
12/31/08 | 18:18 | No Aerosols | - | - | - |
1/2/09 | 7:26 | Attenuated | - | - | - |
1/2/09 | 18:06 | 1 | 0.00 | 1.50 | 1.50 |
1/4/09 | 7:14 | 1 | 0.00 | 1.00 | 1.00 |
1/7/09 | 18:25 | Attenuated | - | - | - |
1/9/09 | 18:12 | No Aerosols | - | - | - |
1/16/09 | 18:19 | Attenuated | - | - | - |
1/18/09 | 7:41 | < | - | - | - |
1/20/09 | 7:15 | Attenuated | 0.00 | 1.50 | 1.50 |
1/23/09 | 18:26 | 1 | - | - | - |
1/25/09 | 18:14 | No Aerosols | - | - | - |
1/27/09 | 7:22 | Attenuated | 0.00 | 1.50 | 1.50 |
2/1/09 | 18:21 | No Aerosols | - | - | - |
2/3/09 | 7:29 | Attenuated | - | - | - |
2/5/09 | 7:18 | No Aerosols | 0.00 | 1.00 | 1.00 |
2/8/09 | 18:28 | 1 | 0.00 | 1.00 | - |
2/10/09 | 18:16 | 1 | 0.00 | 1.50 | - |
2/12/09 | 7:24 | 1 | 0.00 | 1.00 | 1.00 |
Summer | Layer 1 | Layer 2 | ||||||
---|---|---|---|---|---|---|---|---|
Dates | Time (UTC) | Number of Layers | Layer Bottom (km) | Layer Top (km) | Layer Thickness (km) | Layer Bottom (km) | Layer Top (km) | Layer Thickness (km) |
6/2/09 | 18:27 | 1 | 0.00 | 2.00 | 2.00 | - | - | - |
6/4/09 | 5:56 | Attenuated | - | - | - | - | - | - |
6/6/09 | 7:23 | 1 | 0.00 | 1.00 | 1.00 | - | - | - |
6/11/09 | 7:14 | 1 | 1.00 | 2.00 | 1.00 | - | - | - |
6/16/09 | 18:40 | 1 | 1.00 | 2.00 | 1.00 | - | - | - |
6/18/09 | 19:08 | 1 | 1.00 | 2.00 | 1.00 | - | - | - |
6/20/09 | 7:35 | 2 | 0.00 | 2.00 | 2.00 | 1.50 | 2.50 | 1.00 |
6/22/09 | 7:23 | Attenuated | - | - | - | - | - | - |
6/27/09 | 7:41 | 1 | 0.00 | 2.50 | 2.50 | - | - | - |
6/29/09 | 7:29 | 1 | 0.00 | 2.50 | 2.50 | - | - | - |
7/2/09 | 18:39 | 1 | 2.00 | 3.00 | 1.00 | - | - | - |
7/11/09 | 18:32 | < | - | - | - | |||
7/18/09 | 18:35 | 2 | 0.00 | 2.00 | 2.00 | 1.50 | 2.50 | 1.00 |
7/20/09 | 7:46 | < | - | - | - | - | - | - |
7/20/09 | 18:26 | 1 | 1.00 | 3.00 | 2.00 | - | - | - |
7/29/09 | 7:29 | 1 | 0.00 | 2.00 | 2.00 | - | - | - |
8/3/09 | 18:37 | 1 | 0.00 | 1.00 | 1.00 | - | - | - |
8/5/09 | 18:24 | 1 | 0.00 | 2.00 | 2.00 | - | - | - |
8/12/09 | 18:30 | 1 | 0.00 | 2.00 | 2.00 | - | - | - |
8/14/09 | 7:37 | 2 | 0.00 | 2.00 | 2.00 | 2.50 | 3.50 | 1.00 |
8/19/09 | 18:35 | 1 | 0.00 | 1.00 | 1.00 | - | - | - |
8/28/09 | 18:28 | 1 | 0.00 | 1.00 | 1.00 | - | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alston, E.J.; Sokolik, I.N. Assessment of Aerosol Radiative Forcing with 1-D Radiative Transfer Modeling in the U. S. South-East. Atmosphere 2018, 9, 271. https://doi.org/10.3390/atmos9070271
Alston EJ, Sokolik IN. Assessment of Aerosol Radiative Forcing with 1-D Radiative Transfer Modeling in the U. S. South-East. Atmosphere. 2018; 9(7):271. https://doi.org/10.3390/atmos9070271
Chicago/Turabian StyleAlston, Erica J., and Irina N. Sokolik. 2018. "Assessment of Aerosol Radiative Forcing with 1-D Radiative Transfer Modeling in the U. S. South-East" Atmosphere 9, no. 7: 271. https://doi.org/10.3390/atmos9070271
APA StyleAlston, E. J., & Sokolik, I. N. (2018). Assessment of Aerosol Radiative Forcing with 1-D Radiative Transfer Modeling in the U. S. South-East. Atmosphere, 9(7), 271. https://doi.org/10.3390/atmos9070271