Analysis of Compositional Variation and Source Characteristics of Water-Soluble Ions in PM2.5 during Several Winter-Haze Pollution Episodes in Shenyang, China
Abstract
:1. Introduction
2. Experiments
2.1. Sampling and Analysis
2.2. Operating Principles of Observation Instruments
2.2.1. MARGA Operating Principle and Data Analysis
2.2.2. Online Single Particle Aerosol Mass Spectrometer (SPAMS 5)
3. Results and Discussion
3.1. Haze Pollution Episodes
3.2. Water-Soluble Ion Components in Atmospheric Particulates
3.3. Neutrality of Water-Soluble Ions
3.4. Variation of Concentration, Existence Patterns, and Sources of Water-Soluble Ions in Different Haze Episodes
3.4.1. Complex Pollution
3.4.2. Coal-Burning Pollution
3.4.3. Automobile Exhausts Pollution
3.5. Diurnal Variations: Characteristic Differences between Haze and Non-Haze Days
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, T.; Yan, P.Z.; Wang, Z.F.; Li, J.J.; Zhang, W.D.; Yao, X.F.; Wang, W.; Zhu, L.L.; Wu, H.Z. Evaluation and formation mechanism of a severe air pollution in Northeast China in November 2015. Acta Sci. Circumst. 2017, 37, 44–51. (In Chinese) [Google Scholar]
- Xu, H.; Chen, J.Q.; He, D.T.; Cheng, P.; Wang, W.; Zhu, L.; Yao, H.; Gu, Z.Q. Climatic characteristics of haze weather during heating periods from 1980 to 2015 at Shenyang region. J. Meteorol. Environ. 2017, 33, 87–94. (In Chinese) [Google Scholar]
- Wang, K.; Jia, L.L.; Huang, L.K.; Chui, C.; Wang, F.Y.; Lv, N.; Zhao, Q.L. Pollution characteristics of water-soluble ions in PM2.5 and PM10 under severe haze days. J. Harebin Inst. Technol. 2014, 46, 53–58. (In Chinese) [Google Scholar]
- Jung, J.; Lee, H.; Kim, Y.J.; Liu, X.; Zhang, Y.; Gu, J.; Fan, S. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign. J. Environ. Manag. 2009, 90, 3231–3244. [Google Scholar] [CrossRef] [PubMed]
- Fridlind, A.M.; Jacobson, M.Z. A study of gas-aerosol equilibrium and aerosol pH in the remote marine boundary layer during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. Atmos. 2000, 105, 17325–17340. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.L.; Wang, Z.F.; Du, W.; Zhang, Q.; Wang, Q.Q.; Fu, P.Q.; Pan, X.L.; Li, J.; Jayne, J.; Worsnop, D.R. Long-term real-time measurements of aerosol particle composition in Beijing, China: Seasonal variations, meteorological effects, and source analysis. Atmos. Chem. Phys. 2015, 15, 10149–10165. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Fu, P.; Jiang, Q.; Yang, T.; Li, J.; Ge, X. The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmos. Environ. 2013, 77, 927–934. [Google Scholar] [CrossRef]
- Kang, C.M.; Lee, H.S.; Kang, B.-W.; Lee, S.-K.; Sunwoo, Y. Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea. Atmos. Environ. 2004, 38, 4749–4760. [Google Scholar] [CrossRef]
- Huang, Z.; Harrison, R.M.; Allen, A.G.; James, J.D.; Tilling, R.M.; Yin, J. Field intercomparison of filter pack and impactor sampling for aerosol nitrate, ammonium, and sulphate at coastal and inland sites. Atmos. Res. 2004, 71, 215–232. [Google Scholar] [CrossRef]
- Hidy, G.M.; Appel, B.R.; Charlson, R.J.; Clark, W.E.; Friedlander, S.K.; Hutchison, D.H.; Smith, T.B.; Suder, J.; Wesolowski, J.J.; Whitby, K.T. summary of the California aerosol characterization experiment. J. Air Pollut. Control Assoc. 2012, 25, 1106–1114. [Google Scholar] [CrossRef]
- Ottly, C.J.; Harrison, R.M. The spatial distribution and particle size of some inorganic nitrogen species over the North Sea. Atmos. Environ. 1992, 26, 1689–1699. [Google Scholar] [CrossRef]
- Poulain, L.; Spindler, G.; Birmili, W.; Plass-Dülmer, C.; Wiedensohler, A.; Herrmann, H. Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz. Atmos. Chem. Phys. 2011, 11, 12579–12599. [Google Scholar] [CrossRef]
- Petit, J.E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Močnik, G.; Dupont, J.C.; Haeffelin, M.; Leoz-Garziandia, E. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer. Atmos. Chem. Phys. 2015, 15, 2985–3005. [Google Scholar] [CrossRef]
- Twigg, M.M.; Di Marco, C.F.; Leeson, S.; van Dijk, N.; Jones, M.R.; Leith, I.D.; Morrison, E.; Coyle, M.; Proost, R.; Peeters, A.N.M.; et al. Water soluble aerosols and gases at a UK background site—Part 1: Controls of PM2.5 and PM10 aerosol composition. Atmos. Chem. Phys. 2015, 15, 8131–8145. [Google Scholar] [CrossRef] [Green Version]
- Mensah, A.A.; Holzinger, R.; Otjes, R.; Trimborn, A.; Mentel, T.F.; Ten Brink, H.; Henzing, B.; Kiendler-Scharr, A. Aerosol chemical composition at Cabauw, The Netherlands as observed in two intensive periods in May 2008 and March 2009. Atmos. Chem. Phys. 2012, 12, 4723–4742. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.N.; Wang, Y.S.; Wen, T.X.; Liu, Q. Characterization of water-soluble ions in PM2.5 at Dinghu Mount. Environ. Sci. 2013, 34, 1232–1235. (In Chinese) [Google Scholar]
- Duan, F.; Liu, X.; Yu, T.; Cachier, H. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos. Environ. 2004, 38, 1275–1282. [Google Scholar] [CrossRef]
- Du, H.; Kong, L.; Cheng, T.; Chen, J.; Du, J.; Li, L.; Xia, X.; Leng, C.; Huang, G. Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmos. Environ. 2011, 45, 5131–5137. [Google Scholar] [CrossRef]
- Pathak, R.K.; Wu, W.S.; Wang, T. Summertime PM2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys. 2009, 9, 1711–1722. [Google Scholar] [CrossRef] [Green Version]
- Jongejan, P.A.C.; Bai, Y.; Veltkamp, A.C.; Wyers, G.P.; Slanina, J. An automated field instrument for the determination of acidic gases in air. Int. J. Environ. Anal. Chem. 1997, 66, 241–251. [Google Scholar] [CrossRef]
- Khlystov, A.; Wyers, G.P.; Slanina, J. The steam-jet aerosol collector. Atmos. Environ. 1995, 29, 2229–2234. [Google Scholar] [CrossRef] [Green Version]
- Trebs, I.; Meixner, F.X.; Slanma, J.; Otjes, R.; Jongejan, P.; Andreae, M.O. Realtime measurements of ammonia, acid trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin. Atmos. Chem. Phys. 2004, 4, 967–987. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Dong, J.; Li, M.; Gao, W.; Nian, H.; Fu, Z.; Zhang, G.; Bi, X.; Cheng, P.; et al. Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles. Int. J. Mass Spectrom. 2011, 303, 118–124. [Google Scholar] [CrossRef]
- Song, C.H.; Carmichael, G.R. The aging process of naturally emitted aerosol (sea-salt and mineral aerosol) during long range transport. Atmos. Environ. 1999, 33, 2203–2218. [Google Scholar] [CrossRef]
- Hopke, P.K.; Song, X.H. Classification of single particles by neural networks based on the computer-controlled scanning electron microscopy data. Anal. Chim. Acta 1997, 348, 375–388. [Google Scholar] [CrossRef]
- Determination of Atmospheric Articles PM10 and PM2.5 in Ambient Air by Gravimetric Method. Available online: http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201109/t20110914_217272.shtml. (accessed on 11 July 2018).
- Technical Guidelines for Atmospheric Particulate Source Apportionment Proposed; Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2013.
- Observation and Forecast Level of Haze. In Standard of Meteorological Industry of the People’s Republic of China QX/T 113-2010; China Meteorological Administration: Beijing, China, 2010.
- Sharma, S.K.; Mandal, T.K.; Srivastava, M.K.; Chatterjee, A.; Jain, S.; Saxena, M.; Singh, B.P.; Saraswati, A.; Sharma, A.; Adak, A.; et al. Spatio-temporal variation in chemical characteristics of PM10 over Indo Gangetic Plain of India. Environ. Sci. Pollut. Res. 2016, 23, 18809–18822. [Google Scholar] [CrossRef] [PubMed]
- Lonati, G.; Giugliano, M.; Ozgen, S. Primary and Secondary Components of PM2.5 in Milan (Italy). Environ. Int. 2008, 34, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Kim, E.; Hopke, P.K. The Concentrations and Sources of PM2.5 in Metropolitan New York City. Atmos. Environ. 2006, 40, S312–S332. [Google Scholar] [CrossRef]
- Biswas, K.; Badar, F.; Ghauri, M.; Husain, L. Gaseous and Aerosol Pollutants during Fog and Clear Episodes in South Asian Urban Atmosphere. Atmos. Environ. 2008, 42, 7775–7785. [Google Scholar] [CrossRef]
- Yao, Y.G.; Zou, Q.; Chen, C.; Zhang, X.H.; Liu, H.J.; Kang, X.F. The Analysis of chemical component of PM2.5 on haze formation in Suzhou City. Environ. Monit. China 2014, 30, 62–68. (In Chinese) [Google Scholar]
- Zhou, Y.Y.; Ma, Y.; Zheng, J.; Cui, F.P.; Wang, L. Pollution characteristics and light extinction effects of water-soluble Ions in PM2.5 during winter hazy days at north suburban Nanjing. Environ. Sci. 2015, 36, 1926–1934. (In Chinese) [Google Scholar]
- Kong, S.F.; Li, L.; Li, X.X.; Yin, Y.; Chen, K.; Liu, D.T.; Ji, Y.Q. The impacts of firework burning at the Chinese Spring Festival on air quality: Insights of tracers, source evolution and aging processes. Atmos. Chem. Phys. 2015, 15, 2167–2184. (In Chinese) [Google Scholar] [CrossRef]
- Liu, J.; Wu, D.; Fan, S.J.; Wu, M. Pollution characteristics during haze and clean processes in Guangzhou. Acta Sci. Circumst. 2015, 35, 3433–3442. (In Chinese) [Google Scholar]
- Wang, H.B.; Tian, M.; Li, X.; Chang, Q.; Cao, J.; Yang, F.; Ma, Y.L.; He, K.B. Chemical composition and light extinction contribution of PM2.5 in urban Beijing for a 1-year period. Aerosol Air Qual. Res. 2015, 15, 2200–2211. [Google Scholar] [CrossRef]
- Shen, J.C.; Chen, C.; Duo, K.X. Pollution characteristics of water soluble Ions in PM2.5 in some cities of central China. Environ. Sci. Technol. 2014, 37, 153–156. [Google Scholar]
- Fang, J.L.; Liu, Z.; Wang, H.W.; Hao, S.X.; Dong, X.Y. Distribution characteristics and influencing factors of nine water-soluble ions in PM2.5 in Beijing. J. Environ. Health 2016, 33, 317–319. (In Chinese) [Google Scholar]
- Chen, N.; Quan, J.H.; Tian, Y.P.; Cao, W.X.; Liu, H.; Zheng, M.M.; Liu, L.; Hu, H. The Physical and Chemical Properties of Atmospheric Pollutant in Wuhan Urban Area during the Haze. Environ. Monit. China 2016, 32, 20–25. (In Chinese) [Google Scholar]
- Yao, C.T. Changes of Chemical Compositions of Atmospheric Fine Particles during a Typical Haze Event in Taiyuan. Master’s Thesis, Shanxi University, Taiyuan, China, 1 June 2013. (In Chinese). [Google Scholar]
- Sun, J.; Zhang, Q.; Canagaratna, M.R.; Zhang, Y.; Ng, N.L.; Sun, Y.; Jayne, J.T.; Zhang, X.; Zhang, X.; Worsnop, D.R. Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer. Atmos. Environ. 2010, 44, 131–140. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.L.; Xu, X.F.; Xu, H.H. Comparison analysis of variation characteristics of SO2, NOx, O3 and PM2.5 between rural and urban areas, Beijing. Environ. Sci. 2008, 29, 1059–1065. (In Chinese) [Google Scholar]
- McLaren, R.; Salmon, R.A.; Liggio, J.; Hayden, K.L.; Anlauf, K.G.; Leaitch, W.R. Nighttime chemistry at a rural site in the Lower Fraser Valley. Atmos. Environ. 2004, 38, 5837–5848. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.J.; Tang, L.L.; Wang, Z.; Yu, H.X.; Sun, Y.L.; Liu, D.; Qin, W.; Canonaco, F.; Prévôt, A.S.H.; Zhang, H.L.; et al. Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China. Atmos. Chem. Phys. 2015, 15, 1331–1349. [Google Scholar] [CrossRef]
- Hu, W.W.; Hu, M.; Yuan, B.; Jimenez, J.L.; Tang, Q.; Peng, J.F.; Hu, W.; Shao, M.; Wang, M.; Zeng, L.M.; et al. Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China. Atmos. Chem. Phys. 2013, 13, 10095–10112. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Q.; Yang, T.; Wang, Z.F. Impact of dust-haze episode from one air pollution control region to the other-one caxe study. Clim. Environ. Res. 2011, 16, 690–696. (In Chinese) [Google Scholar]
- Hong, Y.; Ma, Y.J.; Wang, X.Q.; Zhang, Y.H.; Lu, Z.Y.; Wang, Y.F.; Zhou, D.P.; Liu, N.W. External influences in the haze episode in the central city group of Liaoning: A case study. Acta Sci. Circumst. 2013, 33, 2115–2122. (In Chinese) [Google Scholar]
- Yang, T.; Wang, X.Q.; Wang, Z.F. Gravity current driven transport of haze from North China Plain to North east China in Winter 2010 Part 2: Model simulation with tagged tracers. SOLA 2013, 9, 60–64. [Google Scholar] [CrossRef]
- Sun, Y.L.; Wang, Z.F.; Fu, P.Q.; Yang, T.; Jiang, Q.; Dong, H.B.; Li, J.; Jia, J.J. Aerosol composition, sources and processes during wintertime in Beijing, China. Atmos. Chem. Phys. 2013, 13, 4577–4592. [Google Scholar] [CrossRef]
- Chow, J.C. Measurement methods to determine compliance with ambient air quality standards for suspended particles. J. Air Waste Manag. Assoc. 1995, 45, 320–382. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.Y.; Zhao, C.S.; Ran, L.; Lin, W.L.; Yan, P.; Xu, X.B. SO2 noontime-peak phenomenon in the North China Plain. Atmos. Chem. Phys. 2014, 14, 7757–7768. [Google Scholar] [CrossRef]
- Farnham, I.M.; Johannesson, K.H.; Singh, A.K. Factor analytical approaches for evaluating groundwater trace element chemistry data. Anal. Chim. Acta 2003, 490, 123–138. [Google Scholar] [CrossRef]
- He, P.; Li, S.S.; Zhu, W.Q.; Sun, Z.Q.; Liang, W. How wet desulfurization cause large area Smog. Sci. Manag. 2017, 37, 7–11. (In Chinese) [Google Scholar]
- Zhu, T.; Shang, J.; Zhao, D. The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze. Sci. China 2010, 40, 1731–1740. [Google Scholar] [CrossRef]
- Brown, S.S.; Stark, H.; Ryerson, T.B.; Williams, E.J.; Nicks, D.K.; Trainer, M.; Fehsenfeld, F.C.; Ravishankara, A.R. Nitrogen oxides in the nocturnal boundary layer, Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3. J. Geophys. Res. Atmos. 2003, 108, 4299. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.; Sun, Y.; An, Z. The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos. Environ. 2006, 40, 6579–6591. [Google Scholar] [CrossRef]
- Zhang, N.N.; He, Y.Q.; Wang, C.F.; He, X.Z.; Xin, H.J. Chemical characteristic of water-soluble ions in total suspended particles (TSP) at Lijiang winter time. Atmos. Environ. 2011, 32, 619–625. [Google Scholar]
- Chen, Y.Q.; Zhang, Y.; Wang, Z.W.; Zhang, X.S. Property of Water-soluble ion of aerosol particle in different area in Beijing. Environ. Chem. 2004, 23, 674–680. [Google Scholar]
- Tan, J.H.; Duan, J.C.; Chen, D.H.; Wang, X.H.; Guo, S.J.; Bi, X.H.; Sheng, G.Y.; He, K.B.; Fu, J.M. Chemical characteristics of haze during summer and winter in Guangzhou. Atmos. Res. 2009, 94, 238–245. [Google Scholar] [CrossRef]
PM | Start and End Time/Location & Reference | Weather | NO3− | SO42− | NH4+ | K+ | Cl− | Mg2+ | Ca2+ | TWSI | SNA/PM2.5 | Sample Mode |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM10 | 1. 19 February 2014 03:00–20 February 2014 03:00, This study | Haze | 9 | 13.4 | 5.2 | 0.4 | 1.8 | 0.2 | 0.7 | 30.7 | 52.1 | Marga 1s |
2. 20 February 22: 00–27 February 2014 02:00, This study | - | 32.3 | 33.0 | 22.1 | 1.7 | 6.1 | 0.4 | 0.9 | 96.7 | 44.6 | - | |
3. 11 March 2014 03:00–11 March 2014 22:00, This study | - | 25.6 | 17.2 | 12.9 | 0.6 | 3.5 | 0.8 | 0.6 | 61.2 | 61.5 | - | |
PM2.5 | 4. 17 December 2016 00:00–21 December 2016 14:00, This study | Haze | 41.2 | 37.9 | 24.5 | 1.8 | 5.7 | 0.4 | 2.5 | 114 | 61.2 | Marga 1s |
5. 27 December 2016 06:00–28 December 2016 08:00, This study | - | 9.7 | 49 | 6.5 | 0.9 | 3.7 | 0.1 | 0.5 | 70.4 | 67.6 | - | |
6. 31 December 2016 08:00–02 January 2017 08:00, This study | - | 56 | 35.7 | 30.2 | 1.6 | 4.6 | 0.1 | 0.3 | 129 | 70.3 | - | |
7. 06 January 2017 23:00–09 January 2017 02:00, This study | - | 33.7 | 28.7 | 22.6 | 2.7 | 6.2 | 0.2 | 0.4 | 94.5 | 39.8 | - | |
8. 16 January 2017 22:00–19 January 2017 15:00, This study | - | 17.4 | 51.9 | 11.9 | 1.3 | 5 | 0.5 | 0.4 | 88.4 | 52.0 | - | |
9. 25 January 2017 14:00–26 January 2017 15:00, This study | - | 26.8 | 14.5 | 13.9 | 1.3 | 2.9 | 0.1 | 0.1 | 59.6 | 63.7 | - | |
PM10 | 18 February to 15 March 2014, This study | Haze average | 22.3 | 21.2 | 13.4 | 0.9 | 3.8 | 0.5 | 0.7 | 62.8 | 50.3 | Marga 1s |
Non-haze average | 10.4 | 11.7 | 7.0 | 0.9 | 3.4 | 0.7 | 0.7 | 34.7 | 34.6 | |||
average | 16.3 | 16.5 | 10.2 | 0.9 | 3.6 | 0.6 | 0.7 | 48.8 | 43.6 | |||
PM2.5 | 17 December 2016 to 27 January 2017, This study | Haze average | 30.8 | 36.3 | 18.3 | 1.6 | 4.7 | 0.2 | 0.7 | 92.6 | 57.2 | |
Non-haze average | 7.4 | 14.9 | 6.0 | 0.8 | 3.0 | 0.4 | 1.0 | 33.5 | 52.4 | |||
average | 19.1 | 25.6 | 12.1 | 1.2 | 3.8 | 0.3 | 0.9 | 63.0 | 55.9 | |||
PM10 and PM2.5 | 18 February to 15 March 2014 and 17 December 2016 to 27 January 2017, This study | Haze average | 26.6 | 28.7 | 15.8 | 1.3 | 4.2 | 0.4 | 0.7 | 77.7 | 54.2 | Marga 1s |
Non-haze average | 8.9 | 13.3 | 6.5 | 0.9 | 3.2 | 0.5 | 0.8 | 34.1 | 41.6 | |||
average | 17.7 | 21.0 | 11.2 | 1.1 | 3.7 | 0.5 | 0.8 | 55.9 | 49.9 | |||
PM10 | 5 January to 5 February 2012, Beijing, China [37] | - | 22.7 | 38.9 | 22.4 | 2.7 | 6.5 | 0.2 | 0.8 | 94.2 | - | Teflon filter |
December 2011, Delhi, India [29] | - | 16.4 | 13.3 | 9.4 | 1.8 | 6.2 | 0.7 | 4.4 | 52.2 | - | Quartz filters | |
December 2011, Varanasi, India [29] | - | 16.7 | 16.7 | 7.8 | 2 | 9.6 | 0.8 | 4.3 | 57.9 | - | Quartz filters | |
December 2011, Kolkata, India [29] | - | 7 | 13.5 | 8.3 | 5.1 | 13.6 | 1 | 7.3 | 55.8 | - | Quartz filters | |
PM2.5 | Cold seasons, 2003, Milan, Italy [30] | - | 15.2 | 5.3 | 4.5 | NA | 0.7 | NA | NA | 25.7 | - | Quartz filters |
2000–2003, New York, NY, USA [31] | Annual average | 2 | 4.3 | 1.9 | 0.1 | 0.1 | NA | NA | 8.4 | - | Quartz filters | |
Winter, 2005–2006, Lahore, Pakistan [32] | Fog | 18.9 | 19.2 | 16.1 | 3.5 | 7.4 | 0.08 | 0.89 | 66.1 | - | Quartz filters | |
October to March 2010–2012, Guangzhou, China [36] | Haze | 8.2 | 12.8 | 10.1 | 0.3 | 2 | 0.1 | 0.3 | 33.8 | - | Marga 1s | |
25 January to 3 February 2013, Nanjing, China [34] | Haze | 13 | 32.6 | 20.4 | 1.1 | 0.5 | 0.2 | 2.2 | 70 | - | Quartz filters | |
25 January to 3 February 2013, Nanjing, China [34] | Non-haze | 2 | 12.9 | 4.7 | 0.8 | 0.4 | 0.2 | 1.9 | 22.9 | - | Quartz filters | |
9–20 January 2013, Wuhan, China [40] | Haze | 39.2 | 38.3 | 22.8 | 2.3 | 2.9 | 0.2 | 2.5 | 108 | - | Quartz filters | |
Normal, 9–20 January 2013, Wuhan, China [40] | - | 12 | 10.4 | 7.2 | 0.6 | 1.9 | 0.1 | 0.4 | 32.6 | - | Quartz filters | |
6–18 February 2012, Zhengzhou, China [38] | - | 30.1 | 26 | 14.3 | 2.7 | 8.1 | 0.3 | 1.7 | 83.2 | - | Quartz filters | |
6–18 February 2012, Luoyang, China [38] | - | 18.6 | 18.5 | 10.7 | 1.7 | 5.1 | 0.2 | 0.8 | 55.6 | - | Quartz filters | |
6–18 February 2012, Pingdingshan, China [38] | - | 29.8 | 25.6 | 13.6 | 2.3 | 7 | 0.2 | 0.6 | 79.1 | - | Quartz filters | |
Winter, March 2014 to February 2015, Beijing, China [39] | - | 11.2 | 9.3 | 5.6 | 1 | 2.9 | 0.1 | 0.5 | 30.6 | - | Quartz filters | |
Winter, 2009–2010, Taiyuan, China [41] | - | 13.7 | 57.2 | 19.6 | 2.5 | 13.5 | 1 | 1.4 | 109 | - | Quartz filters | |
24 January to 21 February 2014, Nanjing, China [35] | - | 5.9 | 5.1 | 4.8 | 0.9 | 0.9 | 0.1 | 0.2 | 17.9 | - | Quartz filters |
Air Mass | 1. Northwesterly | 2. Southwesterly | 3. Southwesterly | 4. Southwesterly | 5. Northwesterly | 6. Southwesterly | 7. Southwesterly | 8. Northwesterly | 9. Southwesterly | 2014 | 2016–2017 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Source | Coal-Burning | Complex | Automobile Exhaust | Complex | Coal-Burning | Complex | Complex | Coal-Burning | Automobile Exhaust | |||
Episodes | 19 February 2014 3:00–20 February 2014 3:00 | 20 February 2014 22:00–27 February 2014 2:00 | 11 March 2014 3:00–11 March 2014 22:00 | 17 December 2016 0:00–21 December 2016 14:00 | 27 December 2016 6:00–28 December 2016 8:00 | 31 December 2016 8:00 –2 January 2017 8:00 | 6 January 2017 23: 00–9 January 2017 2:00 | 16 January 2017 22: 00–19 January 2017 15:00 | 25 January 2017 14:00–26 January 2017 15:00 | |||
PM2.5 | 53.0 | 196 | 90.6 | 169 | 96.5 | 174 | 213 | 156 | 86.6 | 113 | 149 | 131 |
PM10 | 77.3 | 236 | 137 | 223 | 124 | 234 | 266 | 205 | 119 | 150 | 195 | 173 |
NO3− | 9.0 | 32.3 | 25.7 | 41.2 | 9.7 | 56.0 | 33.7 | 17.4 | 26.8 | 22.3 | 30.8 | 26.6 |
SO42+ | 13.4 | 33.0 | 17.2 | 37.9 | 49.0 | 35.7 | 28.7 | 51.9 | 14.5 | 21.2 | 36.3 | 28.7 |
NH4+ | 5.2 | 22.1 | 13.0 | 24.5 | 6.5 | 30.2 | 22.6 | 11.9 | 13.9 | 13.4 | 18.3 | 15.8 |
K+ | 0.4 | 1.7 | 0.6 | 1.8 | 0.9 | 1.6 | 2.7 | 1.3 | 1.3 | 0.9 | 1.6 | 1.3 |
Cl− | 1.8 | 6.1 | 3.5 | 5.7 | 3.7 | 4.6 | 6.2 | 5.0 | 2.9 | 3.8 | 4.7 | 4.2 |
Mg2+ | 0.2 | 0.4 | 0.8 | 0.4 | 0.1 | 0.1 | 0.2 | 0.5 | 0.1 | 0.5 | 0.3 | 0.4 |
Ca2+ | 0.7 | 0.9 | 0.6 | 2.5 | 0.5 | 0.3 | 0.4 | 0.4 | 0.1 | 0.7 | 0.7 | 0.7 |
TWSIs | 31.3 | 97.1 | 61.2 | 114 | 70.3 | 129 | 94.6 | 68.5 | 59.7 | 63.2 | 89.3 | 76.3 |
Percentage | 40.5 | 41.2 | 44.6 | 67.4 | 72.9 | 74.1 | 44.3 | 43.9 | 69.0 | 42.1 | 61.9 | 52.0 |
AQI | 74 | 242 | 120 | 215 | 128 | 219 | 263 | 200 | 115 | 145 | 190 | 168 |
SO2 | 155.4 | 119.0 | 62.4 | 71.6 | 95.9 | 54.4 | 132 | 101 | 40.3 | 112 | 82.5 | 97.4 |
NO2 | 56.1 | 43.7 | 21.9 | 67.6 | 62.6 | 49.3 | 92.1 | 78.9 | 40.5 | 40.6 | 65.2 | 52.9 |
CO | 0.8 | 1.9 | 1.2 | 2.2 | 1.5 | 2.1 | 2.1 | 2.1 | 1.8 | 1.3 | 2.0 | 1.6 |
O3 | 45.0 | 43.6 | 59.7 | 17.7 | 9.5 | 30.8 | 4.5 | 7.1 | 64.5 | 49.4 | 22.3 | 35.9 |
HCl | 0.1 | 0.2 | 0.5 | 0.1 | 0.4 | 0.2 | 0.4 | 0.7 | 0.3 | 0.3 | 0.4 | 0.3 |
HNO2 | 0.2 | 0.8 | 1.0 | 1.1 | 0.6 | 1.0 | 0.9 | 1.2 | 1.0 | 0.7 | 1.0 | 0.8 |
HNO3 | 2.8 | 3.3 | 2.4 | 1.3 | 2.6 | 1.0 | 1.8 | 3.2 | 1.2 | 2.8 | 1.8 | 2.3 |
NH3 | 0.9 | 5.9 | 9.1 | 3.8 | 0.4 | 3.3 | 3.4 | 2.0 | 4.7 | 5.3 | 2.9 | 4.1 |
P | 1031 | 1028 | 1024 | 1026 | 1030 | 1024 | 1021 | 1031 | 1023 | 1027 | 1026 | 1027 |
T | −6.0 | 1.5 | 1.8 | −1.1 | −11.5 | −1.3 | −4.9 | −10.3 | −4.2 | −0.9 | −5.5 | −3.2 |
RH | 43.8 | 55.3 | 43.5 | 86.4 | 58.3 | 75.1 | 67.8 | 66.3 | 57.0 | 47.5 | 68.5 | 58.0 |
WS | 2.0 | 2.1 | 3.2 | 1.5 | 2.2 | 2.2 | 1.7 | 1.4 | 3.6 | 2.4 | 2.1 | 2.3 |
VIS | 10,995 | 4988 | 16,802 | 2601 | 14,515 | 5481 | 8547 | 7335 | 7076 | 10,929 | 7592 | 9261 |
Sand | 5 | 4 | 5 | - | - | - | - | - | - | - | - | - |
Combustion | 4 | 2 | 4 | - | - | - | - | - | - | - | - | - |
Vehicle | 18 | 26 | 38 | - | - | - | - | - | - | - | - | - |
Industry | 19 | 19 | 15 | - | - | - | - | - | - | - | - | - |
Coal | 35 | 34 | 16 | - | - | - | - | - | - | - | - | - |
Secondary | 11 | 8 | 4 | - | - | - | - | - | - | - | - | - |
Others | 8 | 6 | 17 | - | - | - | - | - | - | - | - | - |
Ions | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
Coal-Burning | Complex | Automobile Exhaust | Complex | Coal-Burning | Complex | Complex | Coal-Burning | Automobile Exhaust | ||
NH4+ | SO42− | 0.868 ** | 0.901 ** | 0.996 ** | 0.971 ** | 0.603 ** | 0.939 ** | 0.755 ** | 0.168 | 0.924 ** |
NO3− | 0.412 * | 0.911 ** | 0.988 ** | 0.945 ** | 0.915 ** | 0.973 ** | 0.890 ** | 0.866 ** | 0.952 ** | |
Cl− | 0.402 * | 0.135 | 0.872 ** | 0.595 ** | 0.848 ** | 0.835 ** | −0.630 ** | 0.520 ** | 0.756 ** | |
SO42− | NO3− | 0.025 | 0.751 ** | 0.984 ** | 0.883 ** | 0.385 * | 0.949 ** | 0.438 ** | −0.027 | 0.787 ** |
Cl− | 0.147 | −0.117 | 0.861 ** | 0.634 ** | 0.532 ** | 0.761 ** | −0.298 * | 0.349 * | 0.719 ** | |
K+ | NO3− | −0.006 | 0.636 ** | 0.586 ** | 0.501 ** | 0.843 ** | 0.764 ** | 0.242 | 0.530 ** | 0.528 ** |
SO42− | 0.374 | 0.283 ** | 0.582 ** | 0.715 ** | 0.483 * | 0.733 ** | −0.007 | −0.049 | 0.510 ** | |
Cl− | 0.831 ** | 0.376 ** | 0.794 ** | 0.882 ** | 0.830 ** | 0.921 ** | 0.321 * | 0.615 ** | 0.846 ** |
Ions | Episode 1 (82.9%) | Episode 2 (70.2%) | Episode 3 (86.0%) | Episode 4 (77.3%) | Episode 5 (79.5%) | |||||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | |
σ2 | 36.7 | 21.8 | 13.0 | 11.5 | 39.0 | 21.8 | 9.40 | 50.4 | 24.9 | 10.7 | 43.3 | 19.8 | 14.1 | 53.6 | 15.9 | 10.0 |
Cl− | 0.075 | 0.936 | 0.144 | 0.165 | 0.025 | 0.770 | 0.299 | 0.741 | 0.475 | 0.347 | 0.801 | 0.134 | 0.396 | 0.711 | 0.487 | 0.021 |
NO3− | 0.042 | 0.025 | 0.898 | 0.006 | 0.936 | 0.114 | 0.172 | 0.918 | 0.353 | 0.014 | 0.699 | 0.664 | 0.038 | 0.543 | 0.729 | 0.042 |
SO42− | 0.981 | 0.079 | 0.034 | 0.066 | 0.857 | 0.206 | 0.180 | 0.922 | 0.361 | 0.029 | 0.840 | 0.410 | 0.191 | 0.860 | 0.090 | 0.157 |
NH4+ | 0.831 | 0.313 | 0.360 | 0.096 | 0.931 | 0.041 | 0.138 | 0.922 | 0.357 | 0.008 | 0.807 | 0.536 | 0.148 | 0.788 | 0.581 | 0.017 |
K+ | 0.314 | 0.853 | 0.113 | 0.093 | 0.601 | 0.574 | 0.173 | 0.413 | 0.662 | 0.532 | 0.887 | 0.088 | 0.254 | 0.707 | 0.635 | 0.099 |
Mg2+ | 0.032 | 0.170 | 0.134 | 0.937 | 0.336 | 0.049 | 0.790 | 0.277 | 0.784 | 0.071 | 0.844 | 0.288 | 0.072 | 0.059 | 0.859 | 0.250 |
Ca2+ | 0.008 | 0.710 | 0.205 | 0.212 | 0.160 | 0.373 | 0.648 | 0.302 | 0.766 | 0.257 | 0.117 | 0.826 | 0.037 | 0.241 | 0.756 | 0.041 |
SO2 | 0.756 | 0.102 | 0.377 | 0.046 | 0.196 | 0.615 | 0.249 | 0.025 | 0.015 | 0.920 | 0.156 | 0.221 | 0.463 | 0.648 | 0.277 | 0.001 |
NO2 | 0.485 | 0.439 | 0.541 | 0.062 | 0.079 | 0.891 | 0.177 | 0.146 | 0.074 | 0.976 | 0.026 | 0.030 | 0.873 | 0.091 | 0.208 | 0.916 |
CO | 0.349 | 0.119 | 0.421 | 0.711 | 0.725 | 0.415 | 0.080 | 0.822 | 0.181 | 0.280 | 0.518 | 0.201 | 0.631 | 0.606 | 0.493 | 0.386 |
Episode 6 (84.0%) | Episode 7 (88.9%) | Episode 8 (81.4%) | Episode 9 (78.7%) | |||||||||||||
1 | 2 | 3 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | ||||
σ2 | 48.1 | 21.0 | 14.8 | 36.8 | 26.3 | 16.1 | 9.7 | 42.4 | 16.0 | 13.5 | 9.50 | 57.6 | 21.1 | |||
Cl− | 0.856 | 0.348 | 0.093 | 0.563 | 0.583 | 0.228 | 0.471 | 0.734 | 0.130 | 0.283 | 0.462 | 0.816 | 0.425 | |||
NO3− | 0.970 | 0.096 | 0.010 | 0.584 | 0.770 | 0.166 | 0.092 | 0.144 | 0.954 | 0.079 | 0.064 | 0.905 | 0.148 | |||
SO42− | 0.948 | 0.049 | 0.109 | 0.449 | 0.859 | 0.185 | 0.065 | 0.025 | 0.043 | 0.070 | 0.730 | 0.922 | 0.066 | |||
NH4+ | 0.986 | 0.009 | 0.013 | 0.176 | 0.945 | 0.194 | 0.122 | 0.438 | 0.844 | 0.047 | 0.175 | 0.973 | 0.098 | |||
K+ | 0.856 | 0.248 | 0.014 | 0.158 | 0.119 | 0.310 | 0.889 | 0.758 | 0.441 | 0.054 | 0.120 | 0.643 | 0.709 | |||
Mg2+ | 0.160 | 0.055 | 0.890 | 0.884 | 0.049 | 0.046 | 0.099 | 0.217 | 0.326 | 0.810 | 0.285 | 0.140 | 0.697 | |||
Ca2+ | 0.040 | 0.088 | 0.846 | 0.978 | 0.019 | 0.027 | 0.033 | 0.387 | 0.152 | 0.291 | 0.703 | 0.003 | 0.631 | |||
SO2 | 0.177 | 0.531 | 0.567 | 0.197 | 0.261 | 0.862 | 0.261 | 0.226 | 0.562 | 0.110 | 0.720 | 0.738 | 0.519 | |||
NO2 | 0.330 | 0.884 | 0.196 | 0.266 | 0.347 | 0.758 | 0.118 | 0.413 | 0.142 | 0.806 | 0.022 | 0.735 | 0.551 | |||
CO | 0.706 | 0.543 | 0.105 | 0.654 | 0.252 | 0.503 | 0.194 | 0.792 | 0.405 | 0.258 | 0.216 | 0.680 | 0.663 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.; Li, C.; Li, X.; Ma, Y.; Zhang, Y.; Zhou, D.; Wang, Y.; Liu, N.; Chang, X. Analysis of Compositional Variation and Source Characteristics of Water-Soluble Ions in PM2.5 during Several Winter-Haze Pollution Episodes in Shenyang, China. Atmosphere 2018, 9, 280. https://doi.org/10.3390/atmos9070280
Hong Y, Li C, Li X, Ma Y, Zhang Y, Zhou D, Wang Y, Liu N, Chang X. Analysis of Compositional Variation and Source Characteristics of Water-Soluble Ions in PM2.5 during Several Winter-Haze Pollution Episodes in Shenyang, China. Atmosphere. 2018; 9(7):280. https://doi.org/10.3390/atmos9070280
Chicago/Turabian StyleHong, Ye, Chaoliu Li, Xiaolan Li, Yanjun Ma, Yunhai Zhang, Deping Zhou, Yangfeng Wang, Ningwei Liu, and Xiaojiao Chang. 2018. "Analysis of Compositional Variation and Source Characteristics of Water-Soluble Ions in PM2.5 during Several Winter-Haze Pollution Episodes in Shenyang, China" Atmosphere 9, no. 7: 280. https://doi.org/10.3390/atmos9070280
APA StyleHong, Y., Li, C., Li, X., Ma, Y., Zhang, Y., Zhou, D., Wang, Y., Liu, N., & Chang, X. (2018). Analysis of Compositional Variation and Source Characteristics of Water-Soluble Ions in PM2.5 during Several Winter-Haze Pollution Episodes in Shenyang, China. Atmosphere, 9(7), 280. https://doi.org/10.3390/atmos9070280