River and Lake Ice Processes—Impacts of Freshwater Ice on Aquatic Ecosystems in a Changing Globe
Abstract
:1. Introduction
2. Contributions and Current State of Knowledge
2.1. Physical Processes and Ice Phenology
2.2. Water Quality
2.3. Sustainability
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Powers, S.M.; Hampton, S.E. Winter Limnology as a New Frontier. Limnol. Oceanogr. Bull. 2016, 25, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Bertilsson, S.; Burgin, A.; Carey, C.C.; Fey, S.B.; Grossart, H.-P.; Grubisic, L.M.; Jones, I.D.; Kirillin, G.; Lennon, J.T.; Shade, A.; et al. The under-ice microbiome of seasonally frozen lakes. Limnol. Oceanogr. 2013, 58, 1998–2012. [Google Scholar] [CrossRef] [Green Version]
- Hampton, S.E.; Galloway, A.W.E.; Powers, S.M.; Ozersky, T.; Woo, K.H.; Batt, R.D.; Labou, S.G.; O’Reilly, C.M.; Sharma, S.; Lottig, N.R.; et al. Ecology under lake ice. Ecol. Lett. 2017, 20, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Schindler, D.W.; Welch, H.E.; Kalff, J.; Brunskill, G.J.; Kritsch, N. Physical and Chemical Limnology of Char Lake, Cornwallis Island (75° N Lat.). J. Fish. Res. Board Can. 1974, 31, 585–607. [Google Scholar] [CrossRef]
- Vehmaa, A.; Salonen, K. Development of phytoplankton in Lake Paajarvi (Finland) during under-ice convective mixing period. Aquat. Ecol. 2009, 43, 693–705. [Google Scholar] [CrossRef]
- Katz, S.L.; Izmest’eva, L.R.; Hampton, S.E.; Ozersky, T.; Shchapov, K.; Moore, M.V.; Shimaraeva, S.V.; Silow, E.A.; Izmest’eva, L.R.; Hampton, S.E.; et al. The “Melosira years” of Lake Baikal: Winter environmental conditions at ice onset predict under-ice algal blooms in spring. Limnol. Oceanogr. 2015, 60, 1950–1964. [Google Scholar] [CrossRef] [Green Version]
- Meding, M.E.; Jackson, L.J. Biological implications of empirical models of winter oxygen depletion. Can. J. Fish. Aquat. Sci. 2001, 58, 1727–1736. [Google Scholar] [CrossRef]
- Barica, J.; Mathias, J.A. Oxygen Depletion and Winterkill Risk in Small Prairie Lakes under Extended Ice Cover. J. Fish. Res. Board Can. 1979, 36, 980–986. [Google Scholar] [CrossRef]
- Denfeld, B.A.; Baulch, H.M.; Giorgio, P.A.; Hampton, S.E.; Karlsson, J. A synthesis of carbon dioxide and methane dynamics during the ice-covered period of northern lakes. Limnol. Oceanogr. Lett. 2018, 3, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Powers, S.M.; Baulch, H.M.; Hampton, S.E.; Labou, S.G.; Lottig, N.R.; Stanley, E.H. Nitrification contributes to winter oxygen depletion in seasonally frozen forested lakes. Biogeochemistry 2017, 136, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Powers, S.M.; Labou, S.G.; Baulch, H.M.; Hunt, R.J.; Lottig, N.R.; Hampton, S.E.; Stanley, E.H. Ice duration drives winter nitrate accumulation in north temperate lakes. Limnol. Oceanogr. Lett. 2017, 177–186. [Google Scholar] [CrossRef]
- Cavaliere, E.; Baulch, H.M. Denitrification under lake ice. Biogeochem. Lett. 2018, 137, 285–295. [Google Scholar] [CrossRef]
- Orihel, D.M.; Baulch, H.M.; Casson, N.J.; North, R.L.; Parsons, C.T.; Seckar, D.C.M.; Venkiteswaran, J.J. Internal phosphorus loading in Canadian fresh waters: A critical review and data analysis. Can. J. Fish. Aquat. Sci. 2017, 74, 2005–2029. [Google Scholar] [CrossRef]
- Palacin-Lizarbe, C.; Camarero, L.; Catalan, J. Denitrification Temperature Dependence in Remote, Cold and N-Poor Lake Sediments. Water Resour. Res. 2018, 2. [Google Scholar] [CrossRef]
- Linnansaari, T.; Alfredsen, K.; Stickler, M.; Arnekleiv, J.V.; Harby, A.; Cunjak, R.A. Does ice matter? Site fidelity and movements by Atlantic salmon (Salmo salar L.) parr duirng winter in a substrate enhanced river reach. River Res. Appl. 2009, 25, 773–787. [Google Scholar] [CrossRef]
- Prowse, T.D. River-ice ecology. I.: Hydrologic, geomorphic, and water-quality aspects. J. Cold Reg. Eng. 2001, 15, 1–16. [Google Scholar] [CrossRef]
- Prowse, T.D. River-ice ecology. II. Biological aspects. J. Cold Reg. Eng. 2001, 15, 17–33. [Google Scholar] [CrossRef]
- Twiss, M.R.; McKay, R.M.L.; Bourbonniere, R.A.; Bullerjahn, G.S.; Carrick, H.J.; Smith, R.E.H.; Winter, J.G.; D’souza, N.A.; Furey, P.C.; Lashaway, A.R.; et al. Diatoms abound in ice-covered Lake Erie: An investigation of offshore winter limnology in Lake Erie over the period 2007 to 2010. J. Gt. Lakes Res. 2012, 38, 18–30. [Google Scholar] [CrossRef]
- Weyhenmeyer, G.A. Rates of change in physical and chemical lake variables—Are they comparable between large and small lakes? Hydrobiologia 2008, 599, 105–110. [Google Scholar] [CrossRef]
- Reavie, E.D.; Cai, M.; Twiss, M.R.; Carrick, H.J.; Davis, T.W.; Johengen, T.H.; Gossiaux, D.; Smith, D.E.; Palladino, D.; Burtner, A.; et al. Winter-spring diatom production in Lake Erie is an important driver of summer hypoxia. J. Gt. Lakes Res. 2016, 42, 608–618. [Google Scholar] [CrossRef]
- Prowse, T.D. Environmental significance of ice to streamflow in cold regions. Freshw. Biol. 1994, 32, 241–259. [Google Scholar] [CrossRef]
- Chambers, P.A.; Scrimgeour, G.J.; Pietroniro, A.; Culp, J.M.; Loughran, I. Oxygen modelling under river ice covers. In Proceedings of the Workshop on Environmental Aspects of River Ice; Prowse, T.D., Ed.; NHRI Symposium: Saskatoon, SK, Canada, 1993; pp. 235–260. [Google Scholar]
- Prowse, T.D.; Beltaos, S. Climatic control of river-ice hydrology: A review. Hydrol. Process. 2002, 16, 805–822. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Robertson, D.M.; Benson, B.J.; Wynne, R.H.; Livingstone, D.M.; Arai, T.; Assel, R.A.; Barry, R.G.; Card, V.; Kuusisto, E.; et al. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 2000, 289, 1743–1746. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Magnuson, J.J.; Batt, R.D.; Winslow, L.A.; Korhonen, J.; Aono, Y. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years. Sci. Rep. 2016, 6, 25061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rokaya, P.; Budhathoki, S.; Lindenschmidt, K.-E. Trends in the Timing and Magnitude of Ice-Jam Floods in Canada. Sci. Rep. 2018, 8, 5834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampton, S.E.; Moore, M.V.; Ozersky, T.; Stanley, E.H.; Polashenski, C.M.; Galloway, A.W.E. Heating up a cold subject: Prospects for under-ice plankton research in lakes. J. Plankton Res. 2015, 37, 277–284. [Google Scholar] [CrossRef]
- Fang, X.; Stefan, H.G. Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous United States under past and future climate scenarios. Limnol. Oceanogr. 2009, 54, 2359–2370. [Google Scholar] [CrossRef]
- Magee, M.R.; Wu, C.H. Effects of changing climate on ice cover in three morphometrically different lakes. Hydrol. Process. 2017, 31, 308–323. [Google Scholar] [CrossRef]
- Butcher, J.B.; Nover, D.; Johnson, T.E.; Clark, C.M. Sensitivity of lake thermal and mixing dynamics to climate change. Clim. Chang. 2015, 129, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Beltaos, S.; Prowse, T. River-ice hydrology in a shrinking cryosphere. Hydrol. Process. 2009, 23, 122–144. [Google Scholar] [CrossRef]
- Hewitt, A.; Lopez, L.S.; Gaibisels, K.M.; Murdoch, A.; Higgins, S.N.; Magnuson, J.J.; Paterson, A.M.; Rusak, J.A.; Yao, H.; Sharma, S. Historical Trends, Drivers, and Future Projections of Ice Phenology in Small North Temperate Lakes in the Laurentian Great Lakes Region. Water 2018, 10, 70. [Google Scholar] [CrossRef]
- Scheffer, M.; Hosper, S.H.; Meijer, M.L.; Moss, B.; Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 1993, 8, 275–279. [Google Scholar] [CrossRef]
- Alfredsen, K. An Assessment of Ice Effects on Indices for Hydrological Alteration in Flow Regimes. Water 2017, 9, 914. [Google Scholar] [CrossRef]
- Lindenschmidt, K.-E. RIVICE—A Non-Proprietary, Open-Source, One-Dimensional River-Ice Model. Water 2017, 9, 314. [Google Scholar] [CrossRef]
- Lindenschmidt, K.-E.; Das, A.; Rokaya, P.; Chun, K.P.; Chu, T. Ice jam flood hazard assessment and mapping of the Peace River at the Town of Peace River. In Proceedings of the CRIPE 18th Workshop on the Hydraulics of Ice Covered Rivers, Quebec City, QC, Canada, 18–20 August 2015. [Google Scholar]
- Lindenschmidt, K.-E.; Das, A.; Rokaya, P.; Chu, T. Ice jam flood risk assessment and mapping. Hydrol. Process. 2016, 30, 3754–3769. [Google Scholar] [CrossRef]
- Das, A.; Rokaya, P.; Lindenschmidt, K.-E. Impacts of climate change on ice-jam flooding along a northern river, Canada. Clim. Chang. 2018. submitted. [Google Scholar]
- Lindenschmidt, K.-E.; Rokaya, P.; Das, A.; Li, Z.; Richard, D. A novel stochastic modelling approach for operational real-time ice-jam flood forecasting. J. Hydrol. 2018. submitted. [Google Scholar]
- Zhang, F.; Mosaffa, M.; Chu, T.; Lindenschmidt, K.-E. Using Remote Sensing Data to Parameterize Ice Jam Modeling for a Northern Inland Delta. Water 2017, 9, 306. [Google Scholar] [CrossRef]
- Lindenschmidt, K.-E. Using stage frequency distributions as objective functions for model calibration and global sensitivity analyses. Environ. Model. Softw. 2017, 92, 169–175. [Google Scholar] [CrossRef]
- Zhang, N.; Zheng, X.; Ma, Q. Updated Smoothed Particle Hydrodynamics for Simulating Bending and Compression Failure Progress of Ice. Water 2017, 9, 882. [Google Scholar] [CrossRef]
- Bengtsson, L. Ice-covered lakes: Environment and climate-required research. Hydrol. Process. 2011, 25, 2767–2769. [Google Scholar] [CrossRef]
- Catalan, J. Evolution of dissolved and particulate matter during the ice-covered period in a deep, high-mountain lake. Can. J. Fish. Aquat. Sci. 1992, 49, 945–955. [Google Scholar] [CrossRef]
- Pernica, P.; North, R.L.; Baulch, H.M. In the cold light of day: The potential importance of under-ice convective mixed layers to primary producers. Inland Waters 2017, 7, 138–150. [Google Scholar] [CrossRef]
- Petrov, M.P.; Terzhevik, A.Y.; Palshin, N.I.; Zdorovennov, R.E.; Zdorovennova, G.E. Absorption of Solar Radiation by Snow-and-Ice Cover of Lakes. Water Resour. 2005, 32, 546–554. [Google Scholar] [CrossRef]
- Søndergaard, M.; Bjerring, R.; Jeppesen, E. Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydrobiologia 2013, 710, 95–107. [Google Scholar] [CrossRef]
- McBean, E.; Farquhar, G.; Kouwen, N.; Dubek, O. Predictions of ice-cover development in streams and its effect on dissolved oxygen modelling. Can. J. Civ. Eng. 1979, 6, 197–207. [Google Scholar] [CrossRef]
- Wharton, R.A.; Simmons, G.M.; McKay, C.P. Perennially ice-covered Lake Hoare, Antarctica: Physical environment, biology and sedimentation. Hydrobiologia 1989, 172, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Jakkila, J.; Lepparanta, M.; Kawamura, T.; Shirasawa, K.; Salonen, K. Radiation transfer and heat budget during the ice season in Lake Paajarvi, Finland. Aquat. Ecol. 2009, 43, 681–692. [Google Scholar] [CrossRef]
- Mackinnon, B.D.; Sagin, J.; Baulch, H.M.; Lindenschmidt, K.-E.; Jardine, T.D. Influence of hydrological connectivity on winter limnology in floodplain lakes of the Saskatchewan River Delta, Saskatchewan. Can. J. Fish. Aquat. Sci. 2016, 73, 140–152. [Google Scholar] [CrossRef]
- Akomeah, E.; Lindenschmidt, K.E. Seasonal variation in sediment oxygen demand in a Northern chained River-lake system. Water 2017, 9, 254. [Google Scholar] [CrossRef]
- Terry, J.A.; Sadeghian, A.; Lindenschmidt, K.E. Modelling dissolved oxygen/sediment oxygen demand under ice in a shallow eutrophic prairie reservoir. Water 2017, 9, 131. [Google Scholar] [CrossRef]
- Denfeld, B.A.; Canelhas, M.R.; Weyhenmeyer, G.A.; Bertilsson, S.; Eiler, A.; Bastviken, D. Constraints on methane oxidation in ice-covered boreal lakes. J. Geophys. Res. Biogeosci. 2016, 121, 1924–1933. [Google Scholar] [CrossRef] [Green Version]
- Scrimgeour, G.J.; Prowse, T.D.; Culp, J.M.; Chambers, P.A. Ecological Effects of River Ice Break-Up—A Review and Perspective. Freshw. Biol. 1994, 32, 261–275. [Google Scholar] [CrossRef]
- Shakibaeinia, A.; Kashyap, S.; Dibike, Y.B.; Prowse, T.D. An integrated numerical framework for water quality modelling in cold-region rivers: A case of the lower Athabasca River. Sci. Total Environ. 2016, 569–570, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K. Factors Affecting Sediment Oxygen Demand of the Athabasca River Sediment under Ice Cover. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2012. [Google Scholar]
- Bergeron, N.E.; Enders, E.C. Fish response to freeze up. In River Ice Formation; Beltaos, S., Ed.; Committee on River Ice Processes and Environment: Edmonton, AB, Canada, 2013; ISBN 978-0-9920022-0-6. [Google Scholar]
- Brown, R.S.; Duguay, C.R.; Mueller, R.P.; Moulton, L.L.; Doucette, P.I.; Tagestad, J.D. Use of Synthetic Aperture Radar (SAR) to Identify and Characterize Overwintering Areas of Fish in Ice-Covered Arctic Rivers: A Demonstration with Broad Whitefish and Their Habitats in the Sagavanirktok River, Alaska. Trans. Am. Fish. Soc. 2010, 139, 1711–1722. [Google Scholar] [CrossRef]
- Carr, M.; Lacho, C.; Pollock, M.; Watkinson, D.; Lindenschmidt, K.-E. Development of geomorphic typologies for identifying Lake Sturgeon (Acipenser fulvescens) habitat in the Saskatchewan River System. River Syst. 2015, 21, 215–227. [Google Scholar] [CrossRef]
- Linnansaari, T.; Cunjak, R.A. Effects of ice on behavior of juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2013, 70, 1488–1497. [Google Scholar] [CrossRef]
- Warner, K.; Fowler, R.; Northington, R.; Malik, H.; McCue, J.; Saros, J. How Does Changing Ice-Out Affect Arctic versus Boreal Lakes? A Comparison Using Two Years with Ice-Out that Differed by More Than Three Weeks. Water 2018, 10, 78. [Google Scholar] [CrossRef]
- Weyhenmeyer, G.A.; Westoo, A.K.; Willen, E. Increasingly ice-free winters and their effects on water quality in Sweden’s largest lakes. Hydrobiologia 2008, 599, 111–118. [Google Scholar] [CrossRef]
- Turcotte, B.; Morse, B. The Winter Environmental Continuum of Two Watersheds. Water 2017, 9, 337. [Google Scholar] [CrossRef]
- Schmidt, S.; Moskal, W.; De Mora, S.J.; Howard-Williams, C.; Vincent, W.F. Limnological properties of antarctic ponds during winter freezing. Antarct. Sci. 1991, 3, 379–388. [Google Scholar] [CrossRef]
- Dugan, H.A.; Helmueller, G.; Magnuson, J.J. Ice formation and the risk of chloride toxicity in shallow wetlands and lakes. Limnol. Oceanogr. Lett. 2017, 2, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Chambers, M.K.; White, D.M.; Lilly, M.R.; Hinzman, L.D.; Hilton, K.M.; Busey, R.C. Exploratory analysis of the winter chemistry of five lakes on the North Slope of Alaska. J. Am. Water Resour. Assoc. 2008, 44, 316–327. [Google Scholar] [CrossRef]
- Hosseini, N.; Johnston, J.; Lindenschmidt, K.-E. Impacts of Climate Change on the Water Quality of a Regulated Prairie River. Water 2017, 9, 199. [Google Scholar] [CrossRef]
- Weyhenmeyer, G.A.; Livingstone, D.M.; Meili, M.; Jensen, O.; Benson, B.; Magnuson, J.J. Large geographical differences in the sensitivity of ice-covered lakes and rivers in the Northern Hemisphere to temperature changes. Glob. Chang. Biol. 2011, 17, 268–275. [Google Scholar] [CrossRef]
- Park, H.; Yoshikawa, Y.; Oshima, K.; Kim, Y.; Ngo-Duc, T.; Kimball, J.S.; Yang, D. Quantification of Warming Climate-Induced Changes in Terrestrial Arctic River Ice Thickness and Phenology. J. Clim. 2016, 29, 1733–1754. [Google Scholar] [CrossRef]
- Park, H.; Yoshikawa, Y.; Yang, D.; Oshima, K. Warming Water in Arctic Terrestrial Rivers under Climate Change. J. Hydrometeorol. 2017, 18, 1983–1995. [Google Scholar] [CrossRef]
- Rokaya, P.; Budhathoki, S.; Lindenschmidt, K.-E. Ice-jam flood research: A scoping review. Nat. Hazards 2018. [Google Scholar] [CrossRef]
- Das, A.; Reed, M.; Lindenschmidt, K.-E. Sustainable Ice-Jam Flood Management for Socio-Economic and Socio-Ecological Systems. Water 2018, 10, 135. [Google Scholar] [CrossRef]
- Prowse, T. Introduction: Hydrologic effects of a shrinking cryosphere. Hydrol. Process. 2009, 23, 1–6. [Google Scholar] [CrossRef]
- Prowse, T.; Alfredsen, K.; Beltaos, S.; Bonsal, B.R.; Bowden, W.B.; Duguay, C.R.; Korhola, A.; McNamara, J.; Vincent, W.F.; Vuglinsky, V.; et al. Effects of changes in arctic lake and river ice. Ambio 2011, 40, 63–74. [Google Scholar] [CrossRef]
- Olsson, P.; Folke, C.; Berkes, F. Adaptive comanagement for building resilience in social-ecological systems. Environ. Manag. 2004, 34, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, N.; Akomeah, E.; Davies, J.-M.; Baulch, H.; Lindenschmidt, K.-E. Water quality modelling of a prairie river-lake system. Environ. Sci. Pollut. Res. 2018, 25, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, N.; Chun, K.P.; Wheater, H.; Lindenschmidt, K.E. Parameter Sensitivity of a Surface Water Quality Model of the Lower South Saskatchewan River—Comparison Between Ice-On and Ice-Off Periods. Environ. Model. Assess. 2017, 22, 291–307. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindenschmidt, K.-E.; Baulch, H.M.; Cavaliere, E. River and Lake Ice Processes—Impacts of Freshwater Ice on Aquatic Ecosystems in a Changing Globe. Water 2018, 10, 1586. https://doi.org/10.3390/w10111586
Lindenschmidt K-E, Baulch HM, Cavaliere E. River and Lake Ice Processes—Impacts of Freshwater Ice on Aquatic Ecosystems in a Changing Globe. Water. 2018; 10(11):1586. https://doi.org/10.3390/w10111586
Chicago/Turabian StyleLindenschmidt, Karl-Erich, Helen M. Baulch, and Emily Cavaliere. 2018. "River and Lake Ice Processes—Impacts of Freshwater Ice on Aquatic Ecosystems in a Changing Globe" Water 10, no. 11: 1586. https://doi.org/10.3390/w10111586
APA StyleLindenschmidt, K. -E., Baulch, H. M., & Cavaliere, E. (2018). River and Lake Ice Processes—Impacts of Freshwater Ice on Aquatic Ecosystems in a Changing Globe. Water, 10(11), 1586. https://doi.org/10.3390/w10111586