Analysis of the Dynamic Changes of the Baiyangdian Lake Surface Based on a Complex Water Extraction Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Landsat Time Series
2.2.2. Hydrological and Climate Data
2.3. Methods
2.3.1. SMDPSO Method
2.3.2. Seasonal Verification of SMDPSO
2.3.3. Pearson Correlation Coefficient and Water Inundation Frequency
3. Results
3.1. Verification of Water Extraction Results
3.1.1. Comparison and Verification for Different Seasonal Results
3.1.2. Comparison with Water Level Data
3.2. Variation Characteristics of the Water Area in Baiyangdian Lake
3.2.1. Interannual Change Analysis of Baiyangdian Lake
3.2.2. Spatial Change Analysis of Baiyangdian Lake
3.3. Possible Causes for Changes in Water Area in Baiyangdian Lake
3.3.1. Temporal Changes
3.3.2. Implications of Policies on the Water Surface Area
4. Discussion
4.1. Comparison with Other Studies in Baiyangdian Lake
4.2. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SMDPSO | Spectrum Matching based on Discrete Particle Swarm Optimization |
WL | Water level |
AP | Annual precipitation |
AAT | Annual average temperature |
NI | Natural inflow |
WDV | Water diversion volume |
WIF | Water inundation frequency |
References
- Hou, X.; Feng, L.; Duan, H.; Chen, X.; Sun, D.; Shi, K. Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China. Remote Sens. Environ. 2017, 190, 107–121. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Y.; Tong, T.S.D. Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam. Remote Sens. Environ. 2014, 152, 251–269. [Google Scholar] [CrossRef]
- Tian, H.; Li, W.; Wu, M.; Huang, N.; Li, G.; Li, X.; Niu, Z. Dynamic monitoring of the largest freshwater lake in China using a new water index derived from high spatiotemporal resolution Sentinel-1A data. Remote Sens. 2017, 9, 521. [Google Scholar] [CrossRef]
- Zhang, Y.; Jeppesen, E.; Liu, X.; Qin, B.; Shi, K.; Zhou, Y.; Thomaz, S.M.; Deng, J. Global loss of aquatic vegetation in lakes. Earth Sci. Rev. 2017, 173, 259–265. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Cai, X.; Tian, L.; Gan, W. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. [Google Scholar] [CrossRef]
- Tan, C.; Ma, M.; Kuang, H. Spatial-temporal characteristics and climatic responses of water level fluctuations of global major lakes from 2002 to 2010. Remote Sens. 2017, 9, 150. [Google Scholar] [CrossRef]
- Satgé, F.; Espinoza, R.; Zolá, R.; Roig, H.; Timouk, F.; Molina, J.; Garnier, J.; Calmant, S.; Seyler, F.; Bonnet, M.-P. Role of climate variability and human activity on Poopó lake droughts between 1990 and 2015 assessed using remote sensing data. Remote Sens. 2017, 9, 218. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaffer-Smith, D.; Swenson, J.J.; Barbaree, B.; Reiter, M.E. Three decades of Landsat-derived spring surface water dynamics in an agricultural wetland mosaic; Implications for migratory shorebirds. Remote Sens. Environ. 2017, 193, 180–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Han, X.; Chen, X.; Feng, L. Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013. Remote Sens. Environ. 2015, 156, 426–437. [Google Scholar] [CrossRef]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; van de Giesen, N. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810–813. [Google Scholar] [CrossRef]
- Li, H.; Gao, Y.; Li, Y.; Yan, S.; Xu, Y. Dynamic of Dalinor lakes in the inner Mongolian Plateau and its driving factors during 1976–2015. Water 2017, 9, 749. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Yao, F.; Wang, J.; Luo, J.; Shen, Z.; Wang, C.; Song, C. Recent dynamics of alpine lakes on the endorheic Changtang Plateau from multi-mission satellite data. J. Hydrol. 2017, 552, 633–645. [Google Scholar] [CrossRef]
- Jia, K.; Jiang, W.; Li, J.; Tang, Z. Spectral matching based on discrete particle swarm optimization: A new method for terrestrial water body extraction using multi-temporal Landsat 8 images. Remote Sens. Environ. 2018, 209, 1–18. [Google Scholar] [CrossRef]
- Wang, H.; Qin, F. Summary of the research on water body extraction and application from remote sensing image. Sci. Surv. Mapp. 2018, 43, 23–32. [Google Scholar]
- Deng, Y.; Jiang, W.; Tang, Z.; Li, J.; Lv, J.; Chen, Z.; Jia, K. Spatio-temporal change of lake water extent in Wuhan urban agglomeration based on landsat images from 1987 to 2015. Remote Sens. 2017, 9, 270. [Google Scholar] [CrossRef]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; Curnow, S.; et al. Water observations from space: Mapping surface water from 25 years of landsat imagery across Australia. Remote Sens. Environ. 2016, 174, 341–352. [Google Scholar] [CrossRef]
- Rao, P.; Jiang, W.; Hou, Y.; Chen, Z.; Jia, K. Dynamic change analysis of surface water in the Yangtze River Basin based on MODIS products. Remote Sens. 2018, 10, 1025. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Vancutsem, C.; Bastin, L.; Clerici, M.; Vanbogaert, E.; Bartholomé, E.; Defourny, P. A near real-time water surface detection method based on HSV transformation of MODIS multi-spectral time series data. Remote Sens. Environ. 2014, 140, 704–716. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Gong, Z.; Zhao, W.; Duo, A. Lanscape pattern change and the driving in Baiyangdian Wetland from 1984–2014. Acta Ecol. Sin. 2016, 36, 4780–4791. [Google Scholar]
- Gao, Y.; Wang, H.; Long, D. Changes in hydrological conditions and the eco-environmental problems in Baiyangdian Watershed. Resour. Sci. 2009, 31, 1506–1513. [Google Scholar]
- Li, Y.; Cui, B.; Yang, Z. Influence of hydrological characteristic change of Baiyangdian on the ecological environment in wetland. J. Nat. Resour. 2004, 19, 62–68. [Google Scholar]
- Liu, K.; Zhang, L.; Zhang, G.; Liu, J.; Yan, M. The impact of human activities on runoff in Baiyangdian Basin in North China. J. China Hydrol. 2007, 27, 6–10. [Google Scholar]
- Gong, R. Water change in Baiyangdian Lake and affecting factors. Geogr. Territ. Res. 1993, 9, 36–40. [Google Scholar]
- Bai, D.; Ning, Z. An elementary analysis to Baiyangdian dried-up. China Flood Drought Manag. 2007, 2, 46–48. [Google Scholar]
- Cui, B.; Han, Z.; Li, X.; Lan, Y.; Bai, J.; Cai, Y. Driving Mechanisms and Regulating Measures for Lake Terrestrialization: A Case of Lake Baiyangdian; Science Press: Beijing, China, 2017. [Google Scholar]
- Wang, B.; Liu, J.; Zhang, T.; Chen, Q. Spatial and temporal changes of landscape patches in Baiyangdian Wetlands, China. J. Agro-Environ. Sci. 2010, 29, 1857–1867. [Google Scholar]
- Wang, T.; Cui, B.; Liu, P.; Lan, Y.; Han, Z.; Zhang, Y. Effect of floating plants on distributions of emergent and submerged plants in Baiyangdian Lake. Wetl. Sci. 2013, 11, 266–270. [Google Scholar]
- Li, C.; Zheng, X.; Zhao, F.; Wang, X.; Cai, Y.; Zhang, N. Effects of urban non-point source pollution from Baoding City on Baiyangdian Lake, China. Water 2017, 9, 249. [Google Scholar] [CrossRef]
- Su, L.; Liu, J.; Christensen, P. Spatial distribution and ecological risk assessment of metals in sediments of Baiyangdian wetland ecosystem. Ecotoxicology 2011, 20, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, X.; Ma, D. Baiyangdian functional area division principle. Environ. Sci. 1995, S1, 40–41. [Google Scholar]
- Li, L.; Xu, T.; Chen, Y. Improved urban flooding mapping from remote sensing images using generalized regression neural network-based super-resolution algorithm. Remote Sens. 2016, 8, 625. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, W.; Wang, W.; Deng, Y.; He, B.; Jia, K. The impact of precipitation deficit and urbanization on variations in water storage in the Beijing-Tianjin-Hebei Urban Agglomeration. Remote Sens. 2017, 10, 4. [Google Scholar] [CrossRef]
- Wu, M.; Peng, H.; Fan, S.; Wu, D. Distribution characteristics of regional air quality in the Pearl River Delta. Environ. Sci. Technol. 2015, 38, 77–82. [Google Scholar]
- Qiu, L. Analysis of the causes and countermeasures of drying up of Baiyangdian wetland. Water Sci. Eng. Technol. 2017, 4, 38–41. [Google Scholar]
- Liu, C.; Xie, G.; Huang, H. Shrinking and drying up of Baiyangdian Lake wetland: A natural or human cause? Chin. Geogr. Sci. 2006, 16, 314–319. [Google Scholar] [CrossRef]
- Zhuang, C.; Ouyang, Z.; Xu, W.; Bai, Y. Landscape dynamics of Baiyangdian Lake from 1974 to 2007. Acta Ecol. Sin. 2011, 31, 839–848. [Google Scholar]
- Song, C.; Ke, L.; Pan, H.; Zhan, S.; Liu, K.; Ma, R. Long-term surface water changes and driving cause in Xiong’an, China: From dense Landsat time series images and synthetic analysis. Sci. Bull. 2018, 63, 708–716. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Q.; Tong, Z. Impact analysis of lakefront land use changes on lake area in Wuhan, China. Water 2015, 7, 4869–4886. [Google Scholar] [CrossRef]
- Hu, S.; Liu, C.; Zheng, H.; Wang, Z.; Yu, J. Assessing the impacts of climate variability and human activities on streamflow in the water source area of Baiyangdian Lake. J. Geogr. Sci. 2012, 22, 895–905. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, W.; Jiang, W.; Jia, K.; Rao, P.; Lv, J. Analysis of the Dynamic Changes of the Baiyangdian Lake Surface Based on a Complex Water Extraction Method. Water 2018, 10, 1616. https://doi.org/10.3390/w10111616
Wang X, Wang W, Jiang W, Jia K, Rao P, Lv J. Analysis of the Dynamic Changes of the Baiyangdian Lake Surface Based on a Complex Water Extraction Method. Water. 2018; 10(11):1616. https://doi.org/10.3390/w10111616
Chicago/Turabian StyleWang, Xiaoya, Wenjie Wang, Weiguo Jiang, Kai Jia, Pinzeng Rao, and Jinxia Lv. 2018. "Analysis of the Dynamic Changes of the Baiyangdian Lake Surface Based on a Complex Water Extraction Method" Water 10, no. 11: 1616. https://doi.org/10.3390/w10111616
APA StyleWang, X., Wang, W., Jiang, W., Jia, K., Rao, P., & Lv, J. (2018). Analysis of the Dynamic Changes of the Baiyangdian Lake Surface Based on a Complex Water Extraction Method. Water, 10(11), 1616. https://doi.org/10.3390/w10111616