Seasonal Variations in Water Uptake Patterns of Winter Wheat under Different Irrigation and Fertilization Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments and Measurements
2.2. Water Sample Collections and Isotope Analyses
2.3. Direct Inference Method and MixSIAR Model
3. Results
3.1. Seasonal Variations in Soil Moisture Distribution
3.2. Isotopic Compositions of Different Waters
3.3. Seasonal Variations in the Main RWU Depth
3.4. Seasonal Variations in Water Uptake Proportions
4. Discussion
4.1. Relationship of Root and Soil Moisture Distribution with Water Uptake Patterns
4.2. Effects of Irrigation and Fertilization on Water Uptake Patterns
4.3. Implications for Agricultural Management Practices
4.4. Scope for Further Research Arising from this Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fan, Y.; Miguez-Macho, G.; Jobbagy, E.G.; Jackson, R.B.; Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. USA 2017, 114, 10572–10577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasechko, S.; Sharp, Z.D.; Gibson, J.J.; Birks, S.J.; Yi, Y.; Fawcett, P.J. Terrestrial water fluxes dominated by transpiration. Nature 2013, 496, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.C.; Shen, Y.J.; Sun, H.Y.; Gates, J.B. Evapotranspiration and its partitioning in an irrigated winter wheat field: A combined isotopic and micrometeorologic approach. J. Hydrol. 2011, 408, 203–211. [Google Scholar] [CrossRef]
- Jha, S.K.; Gao, Y.; Liu, H.; Huang, Z.D.; Wang, G.S.; Liang, Y.P.; Duan, A.W. Root development and water uptake in winter wheat under different irrigation methods and scheduling for North China. Agric. Water Manag. 2017, 182, 139–150. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Pei, D.; Chen, S.Y. Root growth and soil water utilization of winter wheat in the North China Plain. Hydrol. Process. 2004, 18, 2275–2287. [Google Scholar] [CrossRef]
- Mahindawansha, A.; Orlowski, N.; Kraft, P.; Rothfuss, Y.; Racela, H.; Breuer, L. Quantification of plant water uptake by water stable isotopes in rice paddy systems. Plant Soil 2018, 429, 281–302. [Google Scholar] [CrossRef]
- Rothfuss, Y.; Javaux, M. Reviews and syntheses: Isotopic approaches to quantify root water uptake: A review and comparison of methods. Biogeosciences 2017, 14, 2199–2224. [Google Scholar] [CrossRef]
- Zimmermann, U.; Ehhalt, D.; Munnich, K. Soil water movement and evapotranspiration: Changes in the isotopic composition of the water. In Proceedings of the IAEA Symposium on the Use of Isotopes in Hydrology, Vienna, Austria, 14–18 November 1966; pp. 567–585. [Google Scholar]
- Phillips, D.L.; Gregg, J.W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 2003, 136, 261–269. [Google Scholar] [CrossRef] [PubMed]
- McCole, A.A.; Stern, L.A. Seasonal water use patterns of Juniperus ashei on the Edwards plateau, Texas, based on stable isotopes in water. J. Hydrol. 2007, 342, 238–248. [Google Scholar] [CrossRef]
- Moore, J.W.; Semmens, B.X. Incorporating uncertainty and prior information into stable isotope mixing models. Ecol. Lett. 2008, 11, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Stock, B.C.; Semmens, B.X. MixSIAR GUI User Manual, version 1.0; 2013. Available online: http://conserver.iugo-cafe.org/user/brice.semmens/MixSIAR (accessed on 12 November 2018).
- Ma, Y.; Song, X.F. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments. Sci. Total Environ. 2016, 550, 471–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Wang, P.Y.; You, D.B.; Liu, W.J. Coupling evapotranspiration partitioning with root water uptake to identify the water consumption characteristics of winter wheat: A case study in the North China Plain. Agric. For. Meteorol. 2018, 259, 296–304. [Google Scholar] [CrossRef]
- Wang, J.; Fu, B.J.; Lu, N.; Zhang, L. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Sci. Total Environ. 2017, 609, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Leroux, X.; Bariac, T.; Mariotti, A. Spatial partitioning of the soil water resource between grass and shrub components in a west African humid savanna. Oecologia 1995, 104, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Schwendenmann, L.; Pendall, E.; Sanchez-Bragado, R.; Kunert, N.; Hölscher, D. Tree water uptake in a tropical plantation varying in tree diversity: Interspecific differences, seasonal shifts and complementarity. Ecohydrology 2015, 8, 1–12. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Z.S. Stable isotopic analysis on water utilization of two xerophytic shrubs in a revegetated desert area: Tengger Desert, China. Water 2015, 7, 1030–1045. [Google Scholar] [CrossRef]
- Asbjornsen, H.; Mora, G.; Helmers, M.J. Variation in water uptake dynamics among contrasting agricultural and native plant communities in the Midwestern US. Agric. Ecosyst. Environ. 2007, 121, 343–356. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F.D.; Ai, Z.P.; Li, J.; Gu, C.K. Stable isotope evidences for identifying crop water uptake in a typical winter wheat-summer maize rotation field in the North China Plain. Sci. Total Environ. 2018, 618, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Nosalewicz, A.; Lipiec, J. The effect of compacted soil layers on vertical root distribution and water uptake by wheat. Plan Soil 2014, 375, 229–240. [Google Scholar] [CrossRef]
- Couvreur, V.; Vanderborght, J.; Draye, X.; Javaux, M. Dynamic aspects of soil water availability for isohydric plants: Focus on root hydraulic resistances. Water Resour. Res. 2014, 50, 8891–8906. [Google Scholar] [CrossRef] [Green Version]
- Sofo, A.S.; Manfreda, S.; Fiorentino, M.; Dichio, B.; Xiloyannis, C. The olive tree: A paradigm for drought tolerance in Mediterranean climates. Hydrol. Earth Syst. Sci. 2008, 12, 293–301. [Google Scholar] [CrossRef]
- Guo, X.H.; Sun, X.H.; Ma, J.J.; Lei, T.; Zheng, L.J.; Wang, P. Simulation of the water dynamics and root water uptake of winter wheat in irrigation at different soil depths. Water 2018, 10, 1033. [Google Scholar] [CrossRef]
- Javaux, M.; Couvreur, V.; Vander Borght, J.; Vereecken, H. Root water uptake: From three-dimensional biophysical processes to macroscopic modeling approaches. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Cai, J.B.; Liu, Y.; Xu, D.; Paredes, P.; Pereira, L.S. Simulation of the soil water balance of wheat using daily weather forecast messages to estimate the reference evapotranspiration. Hydrol. Earth Syst. Sci. 2009, 13, 1045–1059. [Google Scholar] [CrossRef] [Green Version]
- Li, J.M.; Inanaga, S.; Li, Z.H.; Eneji, A.E. Optimizing irrigation scheduling for winter wheat in the North China Plain. Agric. Water Manag. 2005, 76, 8–23. [Google Scholar] [CrossRef]
- Shang, S.H.; Mao, X.M. Application of a simulation based optimization model for winter wheat irrigation scheduling in North China. Agric. Water Manag. 2006, 85, 314–322. [Google Scholar] [CrossRef]
- Wang, P.; Song, X.F.; Han, D.M.; Zhang, Y.H.; Liu, X. A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China. Agric. Water Manag. 2010, 97, 475–482. [Google Scholar] [CrossRef]
- Brunel, J.P.; Walker, G.R.; Dighton, J.C.; Monteny, B. Use of stable isotopes of water to determine the origin of water used by the vegetation and to partition evapotranspiration. A case study from HAPEX-Sahel. J. Hydrol. 1997, 188–189, 466–481. [Google Scholar] [CrossRef]
- Rasse, D.P.; Smucker, A. Root recolonization of previous root channels in corn and alfafa rotations. Plant Soil 1998, 204, 203–212. [Google Scholar] [CrossRef]
- Li, Q.Q.; Dong, B.D.; Qiao, Y.Z.; Liu, M.Y.; Zhang, J.W. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agric. Water Manag. 2010, 97, 1676–1682. [Google Scholar] [CrossRef]
- Flanagan, L.B.; Ehleringer, J.R.; Marshall, J.D. Differential uptake of summer precipitation among co-occurring trees and shrubs in a pinyon-juniper woodland. Plant Cell Environ. 1992, 15, 831–836. [Google Scholar] [CrossRef]
- Heinen, M. Compensation in root water uptake models combined with three-dimensional root length density distribution. Vadose Zone J. 2014, 13. [Google Scholar] [CrossRef]
- Kmoch, H.G.; Ramig, R.E.; Fox, R.L.; Koehler, F.E. Root development of winter wheat as influenced by soil moisture and nitrogen fertilization. Agron. J. 1957, 49, 20–26. [Google Scholar] [CrossRef]
- Carvalho, P.; Foulkes, M.J. Roots and uptake of water and nutrients. In Sustainable Food Production; Christou, P., Savin, R., Costa-Pierce, B., Misztal, I., Whitelaw, C.B., Eds.; Springer: New York, NY, USA, 2013; pp. 1390–1404. [Google Scholar]
- Angadi, S.V.; Entz, M. Root system and water use patterns of different height sunflower cultivars. Agron. J. 2002, 94, 136–145. [Google Scholar] [CrossRef]
- Sun, H.Y.; Liu, C.M.; Zhang, X.Y.; Shen, Y.J.; Zhang, Y.Q. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agric. Water Manag. 2006, 85, 211–218. [Google Scholar] [CrossRef]
- Hsiao, T.C. Growth and productivity of crops in relation to water status. Acta Hortic. 1993, 335, 137–148. [Google Scholar] [CrossRef]
- Paredes, P.; Rodrigues, G.J.; Petry, M.T.; Severo, P.O.; Carlesso, R.; Pereira, L.S. Evapotranspiration partition and crop coefficients of Tifton 85 bermudagrass as affected by frequency of cuttings. Application of the FAO56 dual Kc model. Water 2018, 10, 558. [Google Scholar] [CrossRef]
- Singh, G.; Saraswat, D.; Sharpley, A. A sensitivity analysis of impacts of conservation practices on water quality in L’Anguille River Watershed, Arkansas. Water 2018, 10, 443. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Y.; Zhang, Y.; Tong, X. Optimal irrigation mode and spatio-temporal variability characteristics of soil moisture content in different growth stages of winter wheat. Water 2018, 10, 1180. [Google Scholar] [CrossRef]
- Schymanski, S.J.; Sivapalan, M.; Roderick, M.L.; Hutley, L.B.; Beringer, J. An optimality-based model of the dynamic feedbacks between natural vegetation and the water balance. Water Resour. Res. 2009, 45, W01412. [Google Scholar] [CrossRef]
Depth (cm) | Particle Size (%) | Soil Texture | Bulk Density (g/cm3) | θs (cm3/cm3) | Ks (cm/d) | OC (g/kg) | EC (μS/cm) | pH | NH4+-N (mg/kg) | NO3−-N (mg/kg) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | ||||||||||
0–20 | 58.8 | 33.2 | 8.0 | Sandy loam | 1.56 | 0.41 | 8.41 | 8.03 | 111.70 | 8.15 | 7.0 | 98.9 |
20–120 | 65.3 | 26.7 | 8.0 | Sandy loam | 1.48 | 0.42 | 10.04 | 3.87 | 109.12 | 8.61 | 5.9 | 17.9 |
120–180 | 68.2 | 29.2 | 2.7 | Sandy loam | 1.45 | 0.45 | 7.45 | 1.52 | 87.60 | 8.66 | 6.3 | 20.2 |
180–200 | 32.0 | 51.0 | 17.0 | Silt loam | 1.25 | 0.51 | 0.66 | 5.41 | 161.80 | 8.27 | 4.4 | 19.0 |
Season | Treatment | Greening-Jointing | Jointing-Heading | Heading-Filling | Filling-Harvest | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Irrigation (mm) | Fertilization (kg/ha N) | Irrigation (mm) | Fertilization (kg/ha N) | Irrigation (mm) | Fertilization (kg/ha N) | Irrigation (mm) | Fertilization (kg/ha N) | Irrigation (mm) | Fertilization (kg/ha N) | ||
2014 | T1 | 20 | 105 | 80 | − | − | − | − | − | 100 | 105 |
T2 | 20 | 315 | 80 | − | − | − | − | − | 100 | 315 | |
T3 | 80 | 105 | − | − | − | − | 80 | − | 160 | 105 | |
T4 | 80 | 315 | − | − | − | − | 80 | − | 160 | 315 | |
T5 | 80 | 210 | 80 | − | − | − | 80 | − | 240 | 210 | |
2015 | T1 | 20 | 105 | − | − | 80 | − | − | − | 100 | 105 |
T2 | 20 | 315 | − | − | 80 | − | − | − | 100 | 315 | |
T3 | 80 | 105 | − | − | − | − | 80 | − | 160 | 105 | |
T4 | 80 | 315 | − | − | − | − | 80 | − | 160 | 315 | |
T5 | 80 | 210 | − | − | 80 | − | 80 | − | 240 | 210 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Song, X. Seasonal Variations in Water Uptake Patterns of Winter Wheat under Different Irrigation and Fertilization Treatments. Water 2018, 10, 1633. https://doi.org/10.3390/w10111633
Ma Y, Song X. Seasonal Variations in Water Uptake Patterns of Winter Wheat under Different Irrigation and Fertilization Treatments. Water. 2018; 10(11):1633. https://doi.org/10.3390/w10111633
Chicago/Turabian StyleMa, Ying, and Xianfang Song. 2018. "Seasonal Variations in Water Uptake Patterns of Winter Wheat under Different Irrigation and Fertilization Treatments" Water 10, no. 11: 1633. https://doi.org/10.3390/w10111633
APA StyleMa, Y., & Song, X. (2018). Seasonal Variations in Water Uptake Patterns of Winter Wheat under Different Irrigation and Fertilization Treatments. Water, 10(11), 1633. https://doi.org/10.3390/w10111633