Assessment of Soil Erosion Dynamics Using the GIS-Based RUSLE Model: A Case Study of Wangjiagou Watershed from the Three Gorges Reservoir Region, Southwestern China
Abstract
:1. Introduction
2. Methodology
2.1. Case-Study Area
2.2. Materials
3. Methods
3.1. RUSLE Model and Its Processing
3.1.1. Rainfall-Runoff Erosivity Factor (R)
3.1.2. Soil Erodibility Factor (K)
3.1.3. Slope Length and Steepness Factor (LS)
3.1.4. Vegetation and Management Factor (C)
3.1.5. Erosion Control Practices Factor (P)
3.2. Markov Transition Matrix Model
4. Results and Discussion
4.1. RUSLE Factors
4.2. Characteristics of Soil Erosion Dynamics
4.2.1. Temporal Dynamics of Soil Erosion in the Wangjiagou Watershed
4.2.2. Spatial Dynamics of Soil Erosion in the Wangjiagou Watershed
4.3. Consistency with Other Researches in TGRR
4.4. Addressing Future Research and Efforts in the Wangjiagou Watershed
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xiong, K.; Yin, C.; Ji, H.B. Soil erosion and chemical weathering in a region with typical karst topography. Environ. Earth Sci. 2018, 77, 500. [Google Scholar] [CrossRef]
- Park, S.; Oh, C.; Jeon, S.; Jung, H.; Choi, C. Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation. J. Hydrol. 2011, 399, 263–273. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.L.; Zhang, Z.X.; Yi, L.; Zuo, L.J.; Wen, Q.K.; Liu, F.; Xu, J.Y.; Hu, S.G.; Liu, B. Assessment of soil erosion change and its relationships with land use/cover change in China from the end of the 1980s to 2010. Catena 2016, 137, 256–268. [Google Scholar] [CrossRef]
- Ozsahin, E.; Duru, U.; Eroglu, I. Land Use and Land Cover Changes (LULCC), a Key to Understand Soil Erosion Intensities in the Maritsa Basin. Water 2018, 10, 335. [Google Scholar] [CrossRef]
- Hălbac-Cotoară-Zamfir, R.; Keesstra, S.; Kalantari, Z. The impact of political, socio-economic and cultural factors on implementing environment friendly techniques for sustainable land management and climate change mitigation in Romania. Sci. Total Environ. 2018, 654, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Solomun, M.K.; Barger, N.; Marković, M. Assessing land condition as a first step to achieving land degradation neutrality: A case study of the Republic of Srpska. Environ. Sci. Policy 2018, 90, 19–27. [Google Scholar] [CrossRef]
- Irvem, A.; Topaloglu, F.; Uygur, V. Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. J. Hydrol. 2007, 336, 30–37. [Google Scholar] [CrossRef]
- Ouyang, W.; Skidmore, A.K.; Hao, F.H.; Wang, T.J. Soil erosion dynamics response to landscape pattern. Sci. Total Environ. 2010, 408, 1358–1366. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; de Leeuw, J.; Okx, J.; de Cleen, M.; Visser, S. Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land 2018, 7, 133. [Google Scholar] [CrossRef]
- Liu, R.M.; Men, C.; Wang, X.J.; Xu, F.; Yu, W.W. Application of spatial Markov chains to the analysis of the temporal-spatial evolution of soil erosion. Water Sci. Technol. 2016, 74, 1051–1059. [Google Scholar] [CrossRef]
- Terranova, O.; Antronico, R.; Coscarelli, R.; Iaquinta, P. Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology 2009, 112, 228–245. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Temme, A.J.A.M.; Schoorl, J.M.; Visser, S.M. Evaluating the hydrological component of the new catchment-scale sediment delivery model LAPSUS-D. Geomorphology 2014, 212, 97–107. [Google Scholar] [CrossRef]
- Sun, W.Y.; Shao, Q.Q.; Liu, J.Y.; Zhai, J. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena 2014, 121, 151–163. [Google Scholar] [CrossRef]
- Angima, S.D.; Stott, D.E.; O’Neill, M.K.; Ong, C.K.; Weesies, G.A. Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agric. Ecosyst. Environ. 2003, 97, 295–308. [Google Scholar] [CrossRef]
- Pan, J.H.; Wen, Y. Estimation of soil erosion using RUSLE in Caijiamiao watershed, China. Nat. Hazards 2014, 71, 2187–2205. [Google Scholar] [CrossRef]
- Ju, Z.S.; Wen, A.B.; Yan, D.C.; Shi, Z.L. Estimation of soil erosion in small watershed of the Three Gorges Reservoir Region based on GIS and RUSLE. Earth Environ. 2015, 43, 331–337. [Google Scholar]
- Xu, L.F.; Xu, X.G.; Meng, X.W. Risk assessment of soil erosion in different rainfall scenarios by RUSLE model coupled with Information Diffusion Model: A case study of Bohai Rim, China. Catena 2012, 100, 74–82. [Google Scholar] [CrossRef]
- Shi, Z.H.; Ai, L.; Fang, N.F.; Zhu, H.D. Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: A case study in the Three Gorges Area, China. J. Hydrol. 2012, 438, 156–167. [Google Scholar] [CrossRef]
- Fan, F.L.; Xie, D.T.; Wei, C.F.; Ni, J.P.; Yang, J.; Tang, Z.Y.; Zhou, C. Reducing soil erosion and nutrient loss on sloping land under crop-mulberry management system. Environ. Sci. Pollut. Res. 2015, 22, 14067–14077. [Google Scholar] [CrossRef]
- Xia, L.; Hoermann, G.; Ma, L.; Yang, L. Reducing nitrogen and phosphorus losses from arable slope land with contour hedgerows and perennial alfalfa mulching in Three Gorges Area, China. Catena 2013, 110, 86–94. [Google Scholar] [CrossRef]
- Zheng, H.L.; Wei, J.; Chen, G.J.; Li, Y.B. Review of Soil Erosion on Purple-soil Sloping Croplands in Three Gorges Reservoir Area. J. Chongqing Norm. Univ. 2014, 31, 42–48. [Google Scholar]
- Chen, X.Y.; Huang, Y.H.; Zhao, Y.; Mo, B.; Mi, H.X. Comparison of loess and purple rill erosions measured with volume replacement method. J. Hydrol. 2015, 530, 476–483. [Google Scholar] [CrossRef]
- Ju, L.; Wen, A.B.; Long, Y.; Yan, D.C.; Guo, J. Using Cs-137 tracing methods to estimate soil redistribution rates and to construct a sediment budget for a small agricultural catchment in the three gorges reservoir region, China. J. Mt. Sci.-Engl. 2013, 10, 428–436. [Google Scholar] [CrossRef]
- Cai, C.F.; Ding, S.W.; Zhang, G.Y.; Huang, L.; Wang, D.H. A Preliminary Study on the Conditions and Losses of Nutrients of Purple Soils in Three Gorge Reservoir Area (TGRA). Geogr. Res. 1996, 15, 77–84. [Google Scholar]
- Dai, Z.H.; Feng, X.B.; Zhang, C.; Shang, L.H.; Qiu, G.L. Assessment of mercury erosion by surface water in Wanshan mercury mining area. Environ. Res. 2013, 125, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.P.; Wei, C.F.; Gao, M.; Xie, D.T.; He, B.H. Research on Nutrient Loss from Slope Land in Three Gorges Reservoir Area. J. Soil Water Conserv. 2008, 22, 38–42. [Google Scholar]
- Quinton, J.N.; Govers, G.; Van Oost, K.; Bardgett, R.D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 2010, 3, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Comino, J.R.; Quiquerez, A.; Follain, S.; Raclot, D.; Le Bissonnais, Y.; Casali, J.; Gimenez, R.; Cerda, A.; Keesstra, S.D.; Brevik, E.C.; et al. Soil erosion in sloping vineyards assessed by using botanical indicators and sediment collectors in the Ruwer-Mosel valley. Agric. Ecosyst. Environ. 2016, 233, 158–170. [Google Scholar] [CrossRef]
- Lin, C.; Tu, S.; Huang, J.; Chen, Y. The effect of plant hedgerows on the spatial distribution of soil erosion and soil fertility on sloping farmland in the purple-soil area of China. Soil Tillage Res. 2009, 105, 307–312. [Google Scholar] [CrossRef]
- Sadiki, A.; Faleh, A.; Navas, A.; Bouhlassa, S. Assessing soil erosion and control factors by the radiometric technique in the Boussouab catchment, Eastern Rif, Morocco. Catena 2007, 71, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Qiao, J.; Pan, S.; Hou, X.; Roos, P.; Cao, L. Plutonium as a tracer for soil erosion assessment in northeast China. Sci. Total Environ. 2015, 511, 176. [Google Scholar] [CrossRef]
- Han, J.C.; Huang, G.H.; Zhang, H.; Li, Z. Optimal Land Use Management for Soil Erosion Control by Using an Interval-Parameter Fuzzy Two-Stage Stochastic Programming Approach. Environ. Manag. 2013, 52, 621–638. [Google Scholar] [CrossRef]
- Bunemann, E.K.; Bongiorno, G.; Bai, Z.G.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mader, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Chen, G.J.; Wu, D.T.; Wang, C.X.; Wang, C.J.; Li, Y.B. Dynamic changes of soil erosion in Three Georges Reservoir Area of Chongqing. Sci. Soil Water Conserv. 2009, 7, 105–110. [Google Scholar]
- Lippe, E.; Desmidt, J.T.; Glennlewin, D.C. Markov-Models and Succession—A Test from a Heathland in the Netherlands. J. Ecol. 1985, 73, 775–791. [Google Scholar] [CrossRef]
- Turner, M.G. A Spatial Simulation-Model of Land-Use Changes in a Piedmont County in Georgia. Appl. Math. Comput. 1988, 27, 39–51. [Google Scholar]
- Shi, P.J.; Chen, J.; Pan, Y.Z. Landuse Change Mechanism in Shenzhen City. Acta Geogr. Sin. 2000, 55, 151–160. [Google Scholar]
- Tian, G.J.; Zhang, Z.X.; Wang, C.Y.; Liu, B.; Wei, C.J. Dynamic change of land-use structure in Haikou by remote sensing and GIS. J. Nat. Resour. 2001, 16, 543–546. [Google Scholar]
- Zhao, Z.; Wang, D.Y.; Wang, Y.; Mu, Z.J.; Zhu, J.S. Wet deposition flux and runoff output flux of mercury in a typical small agricultural watershed in Three Gorges Reservoir areas. Environ. Sci. Pollut. Res. 2015, 22, 5538–5551. [Google Scholar] [CrossRef]
- Li, X.R.; Han, X.F.; Gao, M.; Xie, D.T.; Ji, Y.Q. Interception Effect on Engineering Measures for N and P of Small Watershed of Three Gorges Area. Agric. Eng. 2013, 3, 46–49. [Google Scholar]
- Luo, B.L.; Shang, E.F.; Lin, X.; Shi, S.; Liu, Y.Y.; Ni, J.P.; Xie, D.T.; Mu, Z.J. Characterization of runoff phosphorus export from small agricultural catchments with different spatial distribution patterns of rice paddies in the Three Gorges Reservoir Area. J. Agro-Environ. Sci. 2017, 36, 338–344. [Google Scholar]
- Ministry of Water Resources of the People’s Republic of China. Classification Criterions of Soil Erosion Intensities (SL190-2007); China Water&Power Press: Beijing, China, 2007.
- Latocha, A.; Szymanowski, M.; Jeziorska, J.; Stec, M.; Roszczewska, M. Effects of land abandonment and climate change on soil erosion—An example from depopulated agricultural lands in the Sudetes Mts., SW Poland. Catena 2016, 145, 128–141. [Google Scholar] [CrossRef]
- Renard, K.G.; Freimund, J.R. Using Monthly Precipitation Data to Estimate the R-Factor in the Revised Usle. J. Hydrol. 1994, 157, 287–306. [Google Scholar] [CrossRef]
- Arnoldus, H.M.J. Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco. FAO Soils Bull. 1977, 34, 39–51. [Google Scholar]
- Shi, D.M.; Jiang, D.; Lu, X.P.; Jiang, G.Y. Temporal distribution characteristics of rainfall erosivity in Fuling District, Chongqing. Trans. Chin. Soc. Agric. Eng. 2008, 24, 16–21. [Google Scholar]
- Römkens, M.J.M.; Young, R.A.; Poesen, J.W.A.; McCool, D.K.; El-Swaify, S.A.; Bradford, J.M. Chapter 3. Soil erodibility factor (K). In Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Equation (RUSLE); Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., Eds.; US Department of Agriculture: Washington, DC, USA, 1997; pp. 65–99. [Google Scholar]
- Shirazi, M.A.; Boersma, L. A Unifying Quantitative Analysis of Soil Texture. Soil Sci. Soc. Am. J. 1984, 48, 142–147. [Google Scholar] [CrossRef]
- Cai, Y.M.; Zhang, K.L.; Li, S.C. Study on the Conversion of Different Soils Texture. Acta Pedol. Sin. 2003, 40, 511–517. [Google Scholar]
- Zhang, K.L.; Shu, A.P.; Xu, X.L.; Yang, Q.K.; Yu, B. Soil erodibility and its estimation for agricultural soils in China. J. Arid Environ. 2008, 72, 1002–1011. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.G.; Zeng, Y.; Zhou, Z.X.; Wang, P.C.; Xiao, W.F.; Luo, C. Soil erodibility K value in Three Gorges Reservoir Area. Sci. Soil Water Conserv. 2010, 8, 8–12. [Google Scholar]
- McCool, D.K.; Foster, G.R.; Weesies, G.A. Chapter 4. Slope length and steepness factors (LS). In Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Equation (RUSLE); Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., Eds.; US Department of Agriculture: Washington, DC, USA, 1997; pp. 101–141. [Google Scholar]
- Liu, B.Y.; Nearing, M.A.; Risse, L.M. Slope Gradient Effects on Soil Loss for Steep Slopes. Trans. ASAE 1994, 37, 1835–1840. [Google Scholar] [CrossRef]
- McCool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised Slope Steepness Factor for the Universal Soil Loss Equation. Trans. ASAE 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- De Asis, A.M.; Omasa, K. Estimation of vegetation parameter for modeling soil erosion using linear Spectral Mixture Analysis of Landsat ETM data. ISPRS J. Photogramm. 2007, 62, 309–324. [Google Scholar] [CrossRef]
- Borrelli, P.; Marker, M.; Panagos, P.; Schutt, B. Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines, Italy. Catena 2014, 114, 45–58. [Google Scholar] [CrossRef]
- Jurgens, C.; Fander, M. Soil Erosion Assessment by Means of Landsat-Tm and Ancillary Digital Data in Relation to Water Quality. Soil Technol. 1993, 6, 215–223. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Balzter, H. Markov chain models for vegetation dynamics. Ecol. Model. 2000, 126, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Zhao, Y. Forecast of land use pattern change in Dongling District of Shenyang: An application of Markov process. Chin. J. Appl. Ecol. 1993, 4, 272–277. [Google Scholar]
- Liu, S.J.; Ren, Z.Y.; Yang, W.Y.; Zhou, Z.X. Dynamic Changes of Soil Erosion Based on Markov Model—A Case Study of the Xi’an Metropolitan. Res. Soil Water Conserv. 2015, 22, 14–24. [Google Scholar]
- Zhou, J.; Fu, B.; Gao, G.; Lü, Y.; Liu, Y.; Nan, L.; Wang, S. Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the Loess Plateau, China. Catena 2016, 137, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.Y.; Luo, C.D.; Chen, Z.J.; Wang, H.M. Functions of soil and water conservation by grass hedgerow intercropping of slope orchard in Three Gorges Reservoir Area. Resour. Environ. Yangtze Basin 2008, 17, 152–156. [Google Scholar]
- Li, H.; Zhang, X.B.; Wen, A.B.; Shi, Z.L. Erosion Rate of Purple Soil on a Cultivated Slope in the Three Gorges Reservoir Region Using ~(137)Cs Technique. Bull. Soil Water Conserv. 2009, 29, 1–6. [Google Scholar]
- Wen, A.B.; Qi, Y.Q.; Wang, Y.C.; He, X.B.; Fu, J.X.; Zhang, X.B. Study on Erosion and Sedimentation in Yangtze Three Gorge Region. J. Soil Water Conserv. 2005, 19, 33–36. [Google Scholar]
- Htwe, T.N.; Brinkmann, K.; Buerkert, A. Spatio-temporal assessment of soil erosion risk in different agricultural zones of the Inle Lake region, southern Shan State, Myanmar. Environ. Monit. Assess. 2015, 187, 617. [Google Scholar] [CrossRef] [PubMed]
- Van Oost, K.; Govers, G.; Desmet, P. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landsc. Ecol. 2000, 15, 577–589. [Google Scholar] [CrossRef]
- Van Rompaey, A.J.J.; Verstraeten, G.; Van Oost, K.; Govers, G.; Poesen, J. Modelling mean annual sediment yield using a distributed approach. Earth Surf. Process. Landf. 2001, 26, 1221–1236. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Luo, X.L.; Zhang, W.; Wu, X.; Zhang, J.; Han, F. Transport mechanisms of soil-bound mercury in the erosion process during rainfall-runoff events. Environ. Pollut. 2016, 215, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Fang, N.F.; Zhang, P.C.; Shi, Z.H. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J. Hydrol. 2013, 484, 26–37. [Google Scholar] [CrossRef]
- Notebaert, B.; Verstraeten, G.; Ward, P.; Renssen, H.; Van Rompaey, A. Modeling the sensitivity of sediment and water runoff dynamics to Holocene climate and land use changes at the catchment scale. Geomorphology 2011, 126, 18–31. [Google Scholar] [CrossRef]
- Jordan, G.; van Rompaey, A.; Szilassi, P.; Csillag, G.; Mannaerts, C.; Woldai, T. Historical land use changes and their impact on sediment fluxes in the Balaton basin (Hungary). Agric. Ecosyst. Environ. 2005, 108, 119–133. [Google Scholar] [CrossRef]
- Ochoa, P.A.; Fries, A.; Mejia, D.; Burneo, J.I.; Ruiz-Sinoga, J.D.; Cerda, A. Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. Catena 2016, 140, 31–42. [Google Scholar] [CrossRef]
- Wang, L.; Cherkauer, K.A.; Flanagan, D.C. Impacts of Climate Change on Soil Erosion in the Great Lakes Region. Water 2018, 10, 715. [Google Scholar] [CrossRef]
Dataset | Content | Format | Data Source |
---|---|---|---|
Precipitation | Monthly precipitation data in the target area from 2002 to 2014 | Doc | Fuling district bureau of meteorology, Chongqing, China |
Soil | Subsoil sand fraction, silt fraction and clay fraction of brown-purple soil | Dataset | http://vdb3.soil.csdb.cn/ (China soil database) |
Normalized Difference Vegetation Index (NDVI) | Monthly MODIS/Aqua dataset from 2002 to 2014 | HDF | http://glovis.usgs.gov/ |
Digital Elevation Model (DEM) | Dataset with 2.5 m spatial resolution | Grid | College of resources and environment of Southwest University, China |
Land use | Dataset with 2.5 m spatial resolution including 11 kinds of land use patterns in the target area | Grid | College of resources and environment of Southwest University, China |
Basic geographical information | Watershed boundary at 1:1000 scale | Vector | College of resources and environment of Southwest University, China |
Year | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil Loss | 26.77 | 62.55 | 41.09 | 39.13 | 24.55 | 29.64 | 30.84 | 36.95 | 23.79 | 22.96 | 33.58 | 60.16 | 24.09 | 35.08 |
Erodibility (t·ha−1·year−1) | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Very slight (<5) | 14.77% | 6.78% | 10.25% | 10.23% | 14.83% | 12.61% | 12.34% | 10.22% | 14.93% | 15.30% | 11.04% | 6.52% | 15.55% |
Slight (5–25) | 46.10% | 19.34% | 32.10% | 31.84% | 46.75% | 39.56% | 40.31% | 33.45% | 45.96% | 49.88% | 37.12% | 21.55% | 48.36% |
Moderate (25–50) | 23.40% | 24.97% | 25.90% | 29.00% | 25.63% | 28.65% | 27.88% | 28.81% | 28.61% | 24.45% | 29.95% | 25.91% | 24.78% |
Severe (50–80) | 11.45% | 19.10% | 18.97% | 16.48% | 10.87% | 15.03% | 13.26% | 18.32% | 9.52% | 8.41% | 15.04% | 21.01% | 9.31% |
Very severe (80–150) | 3.95% | 23.63% | 10.84% | 11.75% | 1.90% | 4.12% | 6.00% | 8.83% | 0.98% | 1.96% | 6.13% | 18.34% | 1.59% |
Destructive (>150) | 0.32% | 6.19% | 1.94% | 0.70% | 0.01% | 0.03% | 0.21% | 0.36% | 0.0019% | 0.00% | 0.72% | 6.67% | 0.40% |
2002 | 2008 | |||||
---|---|---|---|---|---|---|
Very Slight | Slight | Moderate | Severe | Very Severe | Destructive | |
Very slight | 75.73% | 24.27% | 0.00% | 0.00% | 0.00% | 0.00% |
Slight | 2.50% | 67.63% | 26.24% | 3.31% | 0.32% | 0.00% |
Moderate | 0.00% | 21.13% | 47.81% | 27.12% | 3.93% | 0.00% |
Severe | 0.00% | 5.26% | 35.08% | 29.09% | 30.56% | 0.00% |
Very severe | 0.00% | 0.00% | 14.58% | 51.36% | 29.18% | 4.88% |
Destructive | 0.00% | 0.00% | 0.00% | 7.47% | 86.21% | 6.32% |
2008 | 2014 | |||||
---|---|---|---|---|---|---|
Very Slight | Slight | Moderate | Severe | Very severe | Destructive | |
Very slight | 93.87% | 6.13% | 0.00% | 0.00% | 0.00% | 0.00% |
Slight | 9.85% | 79.85% | 8.95% | 1.36% | 0.00% | 0.00% |
Moderate | 0.00% | 52.50% | 37.04% | 10.37% | 0.08% | 0.00% |
Severe | 0.00% | 5.92% | 68.28% | 19.63% | 6.17% | 0.00% |
Very severe | 0.00% | 0.00% | 29.93% | 54.44% | 11.41% | 4.22% |
Destructive | 0.00% | 0.00% | 0.00% | 0.00% | 30.54% | 69.46% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, J.; Lyu, D.; Wang, D.; Wang, Y.; Yin, D.; Zhao, Z.; Mu, Z. Assessment of Soil Erosion Dynamics Using the GIS-Based RUSLE Model: A Case Study of Wangjiagou Watershed from the Three Gorges Reservoir Region, Southwestern China. Water 2018, 10, 1817. https://doi.org/10.3390/w10121817
Xue J, Lyu D, Wang D, Wang Y, Yin D, Zhao Z, Mu Z. Assessment of Soil Erosion Dynamics Using the GIS-Based RUSLE Model: A Case Study of Wangjiagou Watershed from the Three Gorges Reservoir Region, Southwestern China. Water. 2018; 10(12):1817. https://doi.org/10.3390/w10121817
Chicago/Turabian StyleXue, Jinping, Dongwei Lyu, Dingyong Wang, Yongmin Wang, Deliang Yin, Zheng Zhao, and Zhijian Mu. 2018. "Assessment of Soil Erosion Dynamics Using the GIS-Based RUSLE Model: A Case Study of Wangjiagou Watershed from the Three Gorges Reservoir Region, Southwestern China" Water 10, no. 12: 1817. https://doi.org/10.3390/w10121817
APA StyleXue, J., Lyu, D., Wang, D., Wang, Y., Yin, D., Zhao, Z., & Mu, Z. (2018). Assessment of Soil Erosion Dynamics Using the GIS-Based RUSLE Model: A Case Study of Wangjiagou Watershed from the Three Gorges Reservoir Region, Southwestern China. Water, 10(12), 1817. https://doi.org/10.3390/w10121817