Occurrence, Seasonal Variation and Risk Assessment of Antibiotics in Qingcaosha Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Sample Collection
2.3. Sample Preparation and Extraction
2.4. Quality Assurance/Quality Control
2.5. Risk Assessment
3. Results
3.1. Occurrence of Antibiotics in Qingcaosha Reservoir
3.2. Seasonal Variation of Antibiotics
3.3. Spatial Variation of Antibiotics
4. Discussion
4.1. Occurrence, Seasonal Variation
4.2. Environmental Risk Assessment of Antibiotics
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Antibiotic | Usage | Molecular Formula | CAS Number | Log Kow | Log Koa | Vapor Pressure (Pascals) |
---|---|---|---|---|---|---|
Sulfadiazine | human | C10H10N4O2S | 68-35-9 | −0.09 | 8.1 | 2.29 × 10−4 |
Sulfamonomethoxine | veterinary | C11H12N4O3S | 1220-83-3 | 0.2 | 12.706 | 5.96 × 10−5 |
Sulfaquinoxaline | veterinary | C14H12N4O2S | 59-40-5 | 1.68 | 14.43 | 3.91 × 10−6 |
Norfloxacin | human/veterinary | C16H18FN3O3 | 70458-96-7 | −1.03 | 15.419 | 1.63 × 10−7 |
Ciprofloxacin | human/veterinary | C17H18FN3O3 | 85721-33-1 | 0.28 | 16.962 | 7.27 × 10−8 |
Ofloxacin | human/veterinary | C18H20FN3O4 | 82419-36-1 | −0.39 | 17.301 | 4.11 × 10−8 |
Cefalexin | human/veterinary | C16H19N3O5S | 23325-78-2 | −0.08 | 18.849 | 7.27 × 10−12 |
Penicillin G | human/veterinary | C16H17N2O4SK | 113-98-4 | −3.01 | 6.05 | 4.96 × 10−13 |
Penicillin V | human/veterinary | C16H17N2O5S | 132-98-9 | 2.09 | 14.833 | 3.81 × 10−8 |
Tylosin | veterinary | C46H77NO17 | 1401-69-0 | 1.63 | 37.257 | 1.36 × 10−28 |
Erythromycin-H2O | human/veterinary | C37H65NO12 | 23893-13-2 | - | - | - |
Oxytetracycline | human/veterinary | C22H25ClN2O9 | 2058-46-0 | −3.6 | 24.561 | 2.09 × 10−22 |
Tetracycline | human/veterinary | C22H25CLN2O8 | 64-75-5 | −3.7 | 25.588 | 5.33 × 10−23 |
Doxycycline | human/veterinary | C22H25ClN2O8 | 24390-14-5 | - | - | - |
Polymix-B | human | C56H100N16O17S | 1405-20-5 | - | - | - |
Vancomycin | human/veterinary | C66H75CL2N9O24 | 1404-93-9 | −0.84 | −0.995 | - |
Lincomycin | human/veterinary | C18H34N2O6S | 154-21-2 | 0.2 | 21.111 | 7.09 × 10−13 |
Group | Antibiotic | CAS Number | Acronym | Relative Molecule Mass | Precursor Ion M/Z | Product Ion M/Z | Collision Energy E/V |
---|---|---|---|---|---|---|---|
Sulfonamides (SAs) | Sulfadiazine | 68-35-9 | SDZ | 250.05 | 251.1 | 156.0, 92.1 | 14, 26 |
Sulfamonomethoxine | 1220-83-3 | SMM | 280.06 | 281 | 108, 156, 92 | 23, 16, 26 | |
Sulfaquinoxaline | 59-40-5 | SQX | 300.07 | 301 | 156, 92.1, 108 | 14, 24, 21 | |
Fluoroquinolones (FQs) | Norfloxacin | 70458-96-7 | NFX | 319.13 | 320.1 | 302.2, 276.2 | 22, 16 |
Ciprofloxacin | 85721-33-1 | CFX | 331.13 | 332.2 | 288.2, 245.1 | 20, 16, 22 | |
Ofloxacin | 82419-36-1 | OFX | 361.14 | 362.2 | 318.0, 261.1 | 17, 26 | |
β-lactmas | Cefalexin | 23325-78-2 | LEX | 365.10 | 348.1 | 106.1, 158, 174 | 23, 8, 12 |
Penicillin G | 113-98-4 | PEN G | 372.05 | 335 | 176.1, 160, 114.1 | 10, 7, 28 | |
Penicillin V | 132-98-9 | PEN V | 349.09 | 351.1 | 229.1, 106.1 | 14, 14 | |
Macrolides (MLs) | Tylosin | 1401-69-0 | TYL | 915.52 | 916.6 | 174, 772.6 | 34, 28 |
Erythromycin-H2O | 23893-13-2 | ETM-H2O | 715.45 | 716.3 | 158, 558 | 28, 17 | |
Tetracyclines (TCs) | Oxytetracycline | 2058-46-0 | OTC | 496.12 | 461.2 | 443.0, 426.0 | 11, 18 |
Tetracycline | 64-75-5 | TC | 480.13 | 444.82 | 410.2, 427.3 | 19, 10 | |
Doxycycline | 24390-14-5 | DC | 480.13 | 445.2 | 428.2, 154 | 18, 28 | |
Others | Polymix-B | 1405-20-5 | POL | 1300.72 | 402 | 101.1, 120.1 | 20, 29 |
Vancomycin | 1404-93-9 | VAN | 1447.43 | 724.9 | 100.1, 144.1 | 27, 13 | |
Lincomycin | 154-21-2 | LIN | 406.21 | 407.2 | 126.1, 359.3 | 35, 15 | |
External standard | Norfloxacin-d5 | 1015856-57-1 | NFX-d5 | 324.34 | 325.1 | 307.2, 281.2 | 22, 16 |
Internal standards | Ciprofloxacin-d8 | 1130050-35-9 | CFX-d8 | 339.18 | 340.2 | 322.2, 296.2 | 21, 17 |
Amoxicillin-d4 | 26787-78-0 | AMX-d4 | 369.4 | 370.2 | 114, 212.1 | 19, 10 | |
Sulfadiazine-d4 | 1020719-78-1 | SDZ-d4 | 254.28 | 255.1 | 160, 96.1 | 14, 25 | |
Doxycycline-d3 | 564-25-0 | dox-d3 | 447.44 | 448.2 | 431.3, 323.2 | 21, 30 |
Compounds | Species | Toxicity Data (mg/L) | PNEC (ng/L) | References | |
---|---|---|---|---|---|
Sulfadiazine | Algae | S. capricornutum | 2.2 | 2200 | [46] |
Invertebrate | N.F | N.F | N.F | N.F | |
Fish | N.F | N.F | N.F | N.F | |
Sulfamonomethoxine | Algae | S. vacuolatus | 3.82 | 3820 | [47] |
Invertebrate | N.F | 2.259 | 2259 | ECOSAR | |
Fish | N.F | 166.297 | 166,297 | ECOSAR | |
Sulfaquinoxaline | Algae | N.F | 131 | 131,000 | [48] |
Invertebrate | N.F | N.F | N.F | N.F | |
Fish | N.F | N.F | N.F | N.F | |
Norfloxacin | Algae | M. wesenbergii | 0.038 | 38 | [49] |
Invertebrate | D. magna | 0.88 | 880 | [50] | |
Fish | N.F | 20,081.355 | 20,081,355 | ECOSAR | |
Ciprofloxacin | Algae | P. subcapitata | 0.002 | 2 | [51] |
Invertebrate | N.F | N.F | N.F | N.F | |
Fish | N.F | N.F | N.F | N.F | |
Ofloxacin | Algae | M. aeruginosa | 0.021 | 21 | [51] |
Invertebrate | C. dubia | 3.13 | 3130 | [51] | |
Fish | D. rerio | >1000 | 1,000,000 | [51] | |
Cefalexin | Algae | N.F | 2.5 | 2500 | [52] |
Invertebrate | N.F | N.F | N.F | N.F | |
Fish | N.F | N.F | N.F | N.F | |
Penicillin G | Algae | N.F | 39.032 | 39,032 | ECOSAR |
Invertebrate | N.F | 193.241 | 193,241 | ECOSAR | |
Fish | N.F | 375.923 | 375,923 | ECOSAR | |
Penicillin V | Algae | N.F | 0.006 | 6 | [53] |
Invertebrate | N.F | N.F | N.F | N.F | |
Fish | N.F | N.F | N.F | N.F | |
Tylosin | Algae | P. subcapitata | 0.95 | 950 | [54] |
Invertebrate | N.F | N.F | N.F | N.F | |
Fish | N.F | N.F | N.F | N.F | |
Erythromycin-H2O | Algae | P. subcapitata | 0.02 | 20 | [51] |
Invertebrate | C. dubia | 0.22 | 220 | [51] | |
Fish | D. rerio | >1000 | 1,000,000 | [51] | |
Oxytetracycline | Algae | M. aeruginosa | 0.23 | 230 | ECOSAR |
Invertebrate | N.F | 3.08 | 30,800 | ECOSAR | |
Fish | Oryzias latipes | 50 | 500,000 | ECOSAR | |
Tetracycline | Algae | M. aeruginosa | 0.09 | 90 | ECOSAR |
Invertebrate | B. calyciflorus | 5.6 | 5600 | ECOSAR | |
Fish | Paracheirodon axelrodi | 2.5 | 25,000 | ECOSAR | |
Doxycycline | Algae | M. aeruginosa | 0.062 | 62 | ECOSAR |
Invertebrate | C. dubia | 0.5 | 500 | ECOSAR | |
Fish | D. rerio | 2.658 | 2658 | ECOSAR | |
Polymix-B | Algae | A. aeruginosa | 2 | 2000 | ECOSAR |
Invertebrate | N.F | N.F | N.F | N.F | |
Fish | N.F | N.F | N.F | N.F | |
Vancomycin | Algae | N.F | 0.6 | 600 | [50] |
Invertebrate | N.F | N.F | N.F | N.F | |
Fish | N.F | N.F | N.F | N.F | |
Lincomycin | Algae | P. subcapitata | 0.07 | 70 | ECOSAR |
Invertebrate | Thamnocephalus platyurus | 33 | 33,000 | ECOSAR | |
Fish | Danio rerio | 1000 | 10,000,000 | ECOSAR |
References
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef] [PubMed]
- Carlet, J.; Collignon, P.; Goldmann, D.; Goossens, H.; Gyssens, I.C.; Harbarth, S.; Jarlier, V.; Levy, S.B.; N’Doye, B.; Pittet, D.; et al. Society’s failure to protect a precious resource: Antibiotics. Lancet 2011, 378, 369–371. [Google Scholar] [CrossRef]
- Mazel, D.; Davies, J. Antibiotic resistance in microbes. Cell. Mol. Life Sci. CMLS 1999, 56, 742–754. [Google Scholar] [CrossRef] [PubMed]
- Batt, A.L.; Kim, S.; Aga, D.S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere 2007, 68, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, G.; Li, X.; Zou, S.; Li, P.; Hu, Z.; Li, J. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Res. 2007, 41, 4526–4534. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shi, Y.; Gao, L.; Liu, J.; Cai, Y. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 2012, 89, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Klosterhaus, S.L.; Grace, R.; Hamilton, M.C.; Yee, D. Method validation and reconnaissance of pharmaceuticals, personal care products, and alkylphenols in surface waters, sediments, and mussels in an urban estuary. Environ. Int. 2013, 54, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.D.; Kulis, J.; Thomson, B.; Chapman, T.H.; Mawhinney, D.B. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci. Total Environ. 2006, 366, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Michael, I.; Rizzo, L.; McArdell, C.S.; Manaia, C.M.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res. 2013, 47, 957–995. [Google Scholar] [CrossRef] [PubMed]
- Manzetti, S.; Ghisi, R. The environmental release and fate of antibiotics. Mar. Pollut. Bull. 2014, 79, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.-L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109–118. [Google Scholar] [CrossRef]
- Watkinson, A.J.; Murby, E.J.; Costanzo, S.D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 2007, 41, 4164–4176. [Google Scholar] [CrossRef] [PubMed]
- Musson, S.E.; Townsend, T.G. Pharmaceutical compound content of municipal solid waste. J. Hazard. Mater. 2009, 162, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Focazio, M.J.; Kolpin, D.W.; Barnes, K.K.; Furlong, E.T.; Meyer, M.T.; Zauqq, S.D.; Barber, L.B.; Thurman, M.E. A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States—II) Untreated drinking water sources. Sci. Total Environ. 2008, 402, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Jiang, L.; Lu, N.; Ma, L. Development of a method for trace level determination of antibiotics in drinking water sources by high performance liquid chromatography-tandem mass spectrometry. Anal. Methods 2015, 7, 1777–1787. [Google Scholar] [CrossRef]
- Adams, C.; Meyer, M.T. Removal of Antibiotics from Surface and Distilled Water in Conventional Water Treatment Processes. J. Environ. Eng. 2002, 128, 253–260. [Google Scholar] [CrossRef]
- Ye, Z.; Weinberg, H.S. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry. Anal. Chem. 2007, 79, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, N.; Wang, B.; Zhao, Q.; Fang, H.; Fu, C.; Tang, C.; Jiang, F.; Zhou, Y.; Chen, Y.; et al. Antibiotics in Drinking Water in Shanghai and Their Contribution to Antibiotic Exposure of School Children. Environ. Sci. Technol. 2016, 50, 2692–2699. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Hu, X.; Yin, D.; Zhang, H.; Yu, Z. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere 2011, 82, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhou, J.L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere 2014, 95, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Yang, Y.; Zhou, J.; Liu, M.; Nie, M.; Shi, H.; Gu, L. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment. Environ. Pollut. 2013, 175, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Yang, Y.; Liu, M.; Yan, C.; Yue, H.; Zhou, J. Occurrence and distribution of antibiotics in the surface sediments of the Yangtze Estuary and nearby coastal areas. Mar. Pollut. Bull. 2014, 83, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; He, Y.; Kirumba, G.; Hassan, Y.; Li, J. Phosphorus fractions and phosphate sorption-release characteristics of the sediment in the Yangtze River estuary reservoir. Ecol. Eng. 2013, 55, 62–66. [Google Scholar] [CrossRef]
- Chen, L.; Mao, F.; Kirumba, G.C.; Jiang, C.; Manefield, M.; He, Y. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress. Ecotoxicol. Environ. Saf. 2015, 122, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhang, J.; Bi, X.; Xu, Z.; He, Y.; Gin, K.Y. Developing an integrated 3D-hydrodynamic and emerging contaminant model for assessing water quality in a Yangtze Estuary Reservoir. Chemosphere 2017, 188, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Kexiang, L.; Minghao, S. Simultaneous Determination of 19 Antibiotics in Environmental Water SamplesUsing Solid Phase Extraction Ultra Pressure Liquid Chromatography Coupled with Tandem Mass Spectrometry. J. Instrum. Anal. 2010, 29, 1209–1214. [Google Scholar]
- Chen, H.; Liu, S.; Xu, X.-R. Antibiotics in the coastal environment of the Hailing Bay region, South China Sea: Spatial distribution, source analysis and ecological risks. Mar. Pollut. Bull. 2015, 95, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, A.J.; Murby, E.J.; Kolpin, D.W.; Costanzo, S.D. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Sci. Total Environ. 2009, 407, 2711–2723. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Zhao, H.; Liu, S.; Xie, H.; Wang, Y.; Chen, J. Antibiotics in the coastal water of the South Yellow Sea in China: Occurrence, distribution and ecological risks. Sci. Total Environ. 2017, 595, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Boleda, M.R.; Galceran, M.T.; Ventura, F. Validation and uncertainty estimation of a multiresidue method for pharmaceuticals in surface and treated waters by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2013, 1286, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Hu, X.; Xu, T.; Zhang, H.; Sheng, D.; Yin, D. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Sci. Total Environ. 2013, 458–460, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yan, W.; Li, X.; Zou, Y.; Chen, X.; Huang, W.; Miao, L.; Zhang, R.; Zhang, G.; Zou, S. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: Concentrations, mass loading and ecological risks. Environ. Pollut. 2013, 182, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Shi, T.; Wu, X.; Cao, H.; Li, X.; Hua, R.; Tang, F.; Yue, Y. The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment. Chemosphere 2015, 122, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Pena, A.; Pina, J.; Silva, L.J.; Meisel, L.; Lino, C.M. Fluoroquinolone antibiotics determination in piggeries environmental waters. J. Environ. Monit. JEM 2010, 12, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.C.; Carlson, K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environ. Sci. Technol. 2007, 41, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, K.G.; Meyer, M.T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci. Total Environ. 2006, 361, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Doretto, K.M.; Peruchi, L.M.; Rath, S. Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils. Sci. Total Environ. 2014, 476–477, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Li, L. Study on Characteristics of Flow State and Deposit Distribution of Qingcaosha Reservoir Area. Urban Roads Bridges Flood Control 2012, 9, 181–183. [Google Scholar]
- De Souza, S.M.L.; de Vasconcelos, E.C.; Dziedzic, M.; de Oliveira, C.M.R. Environmental risk assessment of antibiotics: An intensive care unit analysis. Chemosphere 2009, 77, 962–967. [Google Scholar] [CrossRef] [PubMed]
- Hernando, M.D.; Mezcua, M.; Fernández-Alba, A.R.; Barceló, D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 2006, 69, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Storteboom, H.; Arabi, M.; Davis, J.G.; Crimi, B.; Pruden, A. Tracking antibiotic resistance genes in the South Platte River Basin using molecular signatures of urban, agricultural, and pristine sources. Environ. Sci. Technol. 2010, 44, 7397–7404. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, G.; Zhao, H.; Zhai, G.; Chen, J.; Zhao, H. Antibiotics in a general population: Relations with gender, body mass index (BMI) and age and their human health risks. Sci. Total Environ. 2017, 599, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Qiu, X.; Chen, B.; Yu, X.; Liu, Z.; Zhong, G.; Li, H.; Chen, M.; Sun, G.; Hunag, H.; et al. Antibiotics pollution in Jiulong River estuary: Source, distribution and bacterial resistance. Chemosphere 2011, 84, 1677–1685. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, J.; Yang, F.; Yang, J.; Yin, D. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China. Sci. Total Environ. 2014, 493, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, K.; Nagase, H.; Ozawa, M.; Endoh, Y.S.; Goto, K.; Hirata, K.; Miyamoto, K.; Yoshimura, H. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 2004, 57, 1733–1738. [Google Scholar] [CrossRef] [PubMed]
- Białk-Bielińska, A.; Stolte, S.; Arning, J.; Uebers, U.; Böschen, A.; Stepnowski, P.; Matzke, M. Ecotoxicity evaluation of selected sulfonamides. Chemosphere 2011, 85, 928–933. [Google Scholar] [CrossRef] [PubMed]
- De, L.M.; Fioretto, B.; Poltronieri, C.; Gallina, G. The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim. Chemosphere 2009, 75, 1519–1524. [Google Scholar]
- Ando, T.; Nagase, H.; Eguchi, K.; Hirooka, T.; Nakamura, T.; Miyamoto, K.; Hirata, K. A Novel Method Using Cyanobacteria for Ecotoxicity Test of Veterinary Antimicrobial Agents. Environ. Toxicol. Chem. 2010, 26, 601–606. [Google Scholar] [CrossRef]
- De Souza, S.M.L.; De Vasconcelos, E.C.; Dziedzic, M.; De Oliveira, C.M.R. Environmental risk assessment of antibiotics: An intensive care unit analysis. Chemosphere 2009, 77, 962–967. [Google Scholar] [CrossRef] [PubMed]
- Isidori, M.; Lavorgna, M.; Nardelli, A.; Pascarella, L.; Parrella, A. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci. Total Environ. 2005, 346, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.Y.C.; Yu, T.H.; Lin, C.-F. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere 2008, 74, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Halling-Sørensen, B. Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 2000, 40, 731–739. [Google Scholar] [CrossRef]
- De Liguoro, M.; Cibin, V.; Capolongo, F.; Halling-Sørensen, B.; Montesissa, C. Use of oxytetracycline and tylosin in intensive calf farming: Evaluation of transfer to manure and soil. Chemosphere 2003, 52, 203–212. [Google Scholar] [CrossRef]
Compounds | Sampling Locations | |||||||
---|---|---|---|---|---|---|---|---|
Qingcaosha | Yangtze Estuary | Huangpu River | Chaohu | Pearl River Estuary | South Yellow Sea | Urban Water | Surface Water | |
China | China | China | China | China | China | Australia | Spanish | |
SDZ | n.d–129.8 | 0.28–71.8 | 1.39–112.5 | n.d–45.6 | n.d–726 | - | n.d–30 | - |
SMM | n.d–-163.2 | 0.53–89.1 | 2.05–623.27 | n.d–8.8 | n.d–1080 | n.d–9.3 | - | 8–43 |
SQX | 4.1–73.68 | n.d–23.5 | n.d–64.2 | - | - | - | - | - |
NFX | 32.8–278.2 | n.d–14.2 | n.d–0.2 | n.d–70.2 | n.d–174 | n.d–21.1 | 30–1150 | - |
CFX | n.d–283.5 | n.d–2.27 | n.d–34.2 | n.d–23.3 | n.d–33.6 | - | n.d–1300 | - |
OFX | n.d–30.6 | n.d–12.4 | n.d–28.5 | n.d–182.7 | 2.5–108 | n.d–497.6 | - | - |
LEX | n.d–71.7 | - | - | - | - | - | n.d–100 | - |
PENG | n.d–289.9 | - | - | - | - | n.d–11.8 | n.d–250 | - |
PENV | n.d–404.9 | - | - | - | - | - | n.d–100 | - |
TYL | n.d–6.2 | - | - | - | - | - | 0–60 | 0.5–16 |
ETM-H2O | n.d–37.4 | - | - | - | - | n.d–1.7 | n.d | - |
OTC | n.d | n.d–22.5 | n.d–219.8 | - | - | - | n.d–100 | - |
TC | 4.1–35.9 | n.d–2.37 | n.d–113.89 | - | - | - | n.d–80 | - |
DC | 32.4–266.7 | n.d–5.63 | n.d–112.3 | n.d–42.3 | - | - | n.d–40 | - |
POL | n.d–97.5 | - | - | - | - | - | - | - |
VAN | n.d–49.2 | - | - | - | - | - | - | - |
LIN | n.d–11.5 | - | - | - | - | - | 1–50 | 4–171 |
References | This study | [22] | [20,21] | [35] | [33] | [30] | [29] | [31] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Xu, C.; Wu, X.; Chen, Y.; Han, W.; Gin, K.Y.-H.; He, Y. Occurrence, Seasonal Variation and Risk Assessment of Antibiotics in Qingcaosha Reservoir. Water 2018, 10, 115. https://doi.org/10.3390/w10020115
Jiang Y, Xu C, Wu X, Chen Y, Han W, Gin KY-H, He Y. Occurrence, Seasonal Variation and Risk Assessment of Antibiotics in Qingcaosha Reservoir. Water. 2018; 10(2):115. https://doi.org/10.3390/w10020115
Chicago/Turabian StyleJiang, Yue, Cong Xu, Xiaoyu Wu, Yihan Chen, Wei Han, Karina Yew-Hoong Gin, and Yiliang He. 2018. "Occurrence, Seasonal Variation and Risk Assessment of Antibiotics in Qingcaosha Reservoir" Water 10, no. 2: 115. https://doi.org/10.3390/w10020115
APA StyleJiang, Y., Xu, C., Wu, X., Chen, Y., Han, W., Gin, K. Y. -H., & He, Y. (2018). Occurrence, Seasonal Variation and Risk Assessment of Antibiotics in Qingcaosha Reservoir. Water, 10(2), 115. https://doi.org/10.3390/w10020115