Cascade Cropping System with Horticultural and Ornamental Plants under Greenhouse Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Experimental Water Treatments
2.3. Yield
2.4. Sample Collection and Characterization
2.5. Water Footprint Systems
2.6. Statistical Analysis
3. Results
3.1. Modelling of Water Consumption
3.2. Chemical Composition of Water Treatments
3.3. Yield
3.4. Development of a Model of Water Consumption
3.5. Water Footprint
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
DR | Distribution ratio |
EC | Electrical conductivity |
HPLC | High-performance liquid chromatography |
PAR | Photosynthetically active radiation |
RH | Relative humidity |
SBC | Serial Biological Concentration |
References
- Urrestarazu, M. State of the art and new trends of soilless culture in Spain and in emerging countries. Acta Hortic. 2013, 1013, 305–312. [Google Scholar] [CrossRef]
- Pardossi, A.; Tognoni, F.; Incrocci, L. Mediterranean greenhouse technology. Chron. Hortic. 2004, 44, 28–34. [Google Scholar]
- Thompson, R.B.; Gallardo, M.; Rodríguez, J.S.; Sánchez, J.A.; Magán, J.J. Effect of N uptake concentration on nitrate leaching from tomato grown in free-draining soilless culture under Mediterranean conditions. Sci. Hortic. Amst. 2013, 150, 387–398. [Google Scholar] [CrossRef]
- Granados, M.R.; Thompson, R.B.; Fernández, M.D.; Martínez-Gaitán, C.; Gallardo, M. Prescriptive corrective nitrogen and irrigation management of fertigated and drip-irrigated vegetable crops using modelling and monitoring approaches. Agric. Water Manag. 2013, 119, 121–134. [Google Scholar] [CrossRef]
- Carmassi, G.; Incrocci, L.; Maggini, R.; Malorgio, F.; Tognoni, F.; Pardossi, A. Modelling salinity build-up in recirculating nutrient solution culture. J. Plant Nutr. 2005, 28, 431–445. [Google Scholar] [CrossRef]
- Magan, J.J.; Gallardo, M.; Thompson, R.B.; Lorenzo, P. Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in green-houses in Mediterranean climatic conditions. Agric. Water Manag. 2008, 95, 1041–1055. [Google Scholar] [CrossRef]
- Grewal, H.S.; Maheshwari, B.; Parks, S.E. Water and nutrient use efficiency of a low-cost hydroponic greenhouse for a cucumber crop: An Australian case study. Agric. Water Manag. 2011, 98, 841–846. [Google Scholar] [CrossRef]
- Grattan, S.R.; Oster, J.D.; Benes, S.E.; Kaffka, S.R. Use of saline drainage waters for irrigation. In Agricultural Salinity Assessment and Management, 2nd ed.; Wallender, W.W., Tanji, K.K., Eds.; ASCE Manuals and Reports on Engineering Practice 71; ASCE: Reston, VA, USA, 2012; pp. 687–719. [Google Scholar]
- Bethune, M.G.; Gyles, O.A.; Wang, Q.J. Options for management of saline ground water in an irrigated farming system. Aust. J. Exp. Agric. 2004, 44, 181–188. [Google Scholar] [CrossRef]
- Grattan, S.R.; Oster, J.D. Use and reuse of saline-sodic waters for irrigation of crops. In Crop Production in Saline Environments: Global and Integrative Perspectives; Goyal, S.S., Sharma, S.K., Rains, D.W., Eds.; Haworth Press: New York, NY, USA, 2003; pp. 131–162. [Google Scholar]
- Barron, J.; Okwach, G. Run-off water harvesting for dry spell mitigation in maize (Zea mays L.): Results from on-farm research in semi-arid Kenya. Agric. Water. Manag. 2005, 74, 1–21. [Google Scholar] [CrossRef]
- Adekalu, K.O.; Balogun, J.A.; Aluko, O.B.; Okunade, D.A.; Gowing, J.W.; Faborode, M.O. Runoff water harvesting for dry spell mitigation for cowpea in the savannah belt of Nigeria. Agric. Water. Manag. 2009, 96, 1502–1508. [Google Scholar] [CrossRef]
- Carvajal, F.; Agüera, F.; Sánchez-Hermosilla, J. Water balance in artificial on-farm agricultural water reservoirs for the irrigation of intensive greenhouse crops. Agric. Water. Manag. 2014, 131, 146–155. [Google Scholar] [CrossRef]
- García-García, M.C.; Céspedes, A.J.; Lorenzo, P.; Pérez-Parra, J.J.; Escudero, M.C.; Sánchez-Guerrero, M.C.; Medrano, E.; Baeza, E.; López, J.C.; Magán, J.J.; et al. El Sistema de Producción Hortícola de la Provincia de Almería; IFAPA (Instituto de Formación Agraria y Pesquera de Andalucía): Huelva, Spain, 2016; 179p. [Google Scholar]
- Plaza, B.M.; Soriano, F.; Jiménez-Becker, S.; Lao, M.T. Nutritional responses of Cordyline fruticosa var. ‘Red Edge’ to fertigation with leachates vs. conventional fertigation: Chloride, nitrogen, phosphorus and sulphate. Agric. Water Manag. 2016, 173, 61–66. [Google Scholar] [CrossRef]
- Plaza, B.M.; Paniagua, F.; Ruiz, M.R.; Jiménez-Becker, S.; Lao, M.T. Nutritional responses of Cordyline fruticosa var. ‘Red Edge’ to fertigation with leachates vs. conventional fertigation: Sodium, potassium, calcium and magnesium. Sci. Hortic. Amst. 2017, 215, 157–163. [Google Scholar] [CrossRef]
- Sonneveld, C.; Straver, N. Voedingsoplossingen voor Groenten en Bloemengeteeld in Water of Substraten (Nutrient Solutions for Vegetables and Flower Grown in Water or Substrates), 10th ed. 1994. Available online: http://edepot.wur.nl/237302 (accessed on 1 October 2017).
- Csáky, A.; Martínez-Grau, M.A. Técnicas Experimentales en Síntesis Orgánica; Ed. Síntesis: Madrid, Spain, 1998. [Google Scholar]
- Garcia-Caparrós, P.; Llanderal, A.; El-Tarawy, A.; Maksimovic, I.; Lao, M.T. Crop and irrigation management systems under greenhouse conditions. Water 2018, 10, 62. [Google Scholar] [CrossRef]
- Rodríguez, D.; Reca, J.; Martínez, J.; Lao, M.T.; Urrestarazu, M. Effect of controlling the leaching fraction on the fertigation and production of a tomato crop under soilless culture. Sci. Hortic. Amst. 2014, 179, 153–157. [Google Scholar] [CrossRef]
- Contreras, J.I.; Plaza, B.M.; Lao, M.T.; Segura, M.L. Growth and nutritional response of melon to water quality and nitrogen potassium fertigation levels under greenhouse Mediterranean conditions. Commun. Soil Sci. Plant Anal. 2012, 43, 434–444. [Google Scholar] [CrossRef]
- Martínez, S.; Suay, R.; Moreno, J.; Segura, M.L. Reuse of tertiary municipal wastewater effluent for irrigation of Cucumis melo L. Irrig. Sci. 2013, 31, 661–672. [Google Scholar] [CrossRef]
- Sardans, J.; Rodà, F.; Peñuelas, J. Effects of water and a nutrient pulse supply on Rosmarinus officinalis growth, nutrient content and flowering in the field. Environ. Exp. Bot. 2005, 53, 1–11. [Google Scholar] [CrossRef]
- Massa, D.; Incrocci, L.; Maggini, R.; Carmassi, G.; Campiotti, C.A.; Pardossi, A. Strategies to decrease water drainage and nitrate emission from soilless cultures of greenhouse tomato. Agric. Water Manag. 2010, 97, 971–980. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2011; 672p. [Google Scholar]
- Neocleous, D.; Savvas, D. Effect of different macronutrient cation ratios on macronutrient and water uptake by melon (Cucumis melo) grown in recirculating nutrient solution. J. Plant Nutr. Soil Sci. 2015, 178, 320–332. [Google Scholar] [CrossRef]
- Castellanos, M.T.; Cartagena, M.C.; Requejo, M.I.; Arce, A.; Cabello, M.J.; Ribas, F.; Tarquis, A.M. Agronomic concepts in water footprint assessment: A case of study in a fertirrigated melon crop under semiarid conditions. Agric. Water Manag. 2016, 170, 81–90. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef] [PubMed]
- García-Caparrós, P.; Llanderal, A.; Pestana, M.; Correia, P.; Lao, M.T. Tolerance mechanisms of three potted ornamental plants grown under moderate salinity. Sci. Hortic. Amst. 2016, 201, 84–91. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total. Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- García-Caparrós, P.; Contreras, J.I.; Baeza, R.; Segura, M.L.; Lao, M.T. Integral management of irrigation water in intensive horticultural systems of Almería. Sustainability 2017, 9, 2271. [Google Scholar] [CrossRef]
- Zhao, J.F.; Ma, X.L.; Jin, L.M. Improved land-treatment-system with slow rate for sewage and its test. Trans. CSAE 2006, 22, 85–88. [Google Scholar]
- Duan, J.; Geng, C.; Li, X.; Duan, Z.; Yang, L. The treatment performance and nutrient removal of a garden land infiltration system receiving dairy farm wastewater. Agric. Water Manag. 2015, 150, 103–110. [Google Scholar] [CrossRef]
- Szota, C.; Farrell, C.; Livesley, S.J.; Fletcher, T.D. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater. Water Res. 2015, 83, 195–204. [Google Scholar] [CrossRef] [PubMed]
Parameters | NS0 | NS1 | NS2 |
---|---|---|---|
pH | 5.8 ± 0.1 b | 6.6 ± 0.4 a | 6.6 ± 0.2 a |
EC | 2.0 ± 0.1 b | 3.03 ± 0.2 a | 2.2 ± 0.2 b |
NO3− | 623.1 ± 57.8 a | 297.6 ± 29.1 b | 148.8 ± 15.4 c |
H2PO4− | 140.6 ± 4.8 a | 1.9 ± 0.1 b | 1.8 ± 0.1 b |
Cl− | 122.4 ± 3.9 c | 628.7 ± 54.9 a | 505.4 ± 51.4 b |
SO42− | 215.0 ± 8.6 b | 392.6 ± 40.3 a | 238.0 ± 21.1 b |
Ca2+ | 202.1 ± 10.2 b | 345.6 ± 31.1 a | 225.3 ± 21.5 b |
Mg2+ | 37.4 ± 1.9 c | 93.3 ± 8.2 a | 74.1 ± 6.5 b |
K+ | 186.4 ± 8.2 a | 129.4 ± 10.1 b | 75.2 ± 7.0 c |
Na+ | 59.8 ± 4.1 c | 137.3 ± 10.5 a | 116.1 ± 9.2 b |
Crops | T0 | T1 | T0 | T2 | |
---|---|---|---|---|---|
C. melo | 5500 a | 5500 a | C. melo | 5500 a | 5500 a |
R. officinalis | 35.15 ± 3.73 a | 27.57 ± 2.45 b | R. officinalis | 70.30 ± 7.40 a | 44.65 ± 4.15 b |
Parameter | T0 | T1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Applied | Leached | Applied | Leached | |||||||||
C | R | T | C | R | T | C | R | T | C | R | T | |
Water | 27.3 | 6.1 | 33.4 | 6.3 | 1.5 | 7.8 | 27.3 | *** | 27.3 | 6.3 | 1.5 | 7.8 |
Cl− | 3.3 | 0.9 | 4.2 | 3.7 | 1.0 | 4.7 | 3.3 | 4.7 | 8.0 | 3.7 | 1.4 | 5.1 |
NO3− | 16.1 | 4.6 | 20.7 | 2.3 | 1.3 | 3.7 | 16.1 | 2.2 | 18.3 | 2.3 | 0.1 | 2.4 |
H2PO4− | 3.7 | 1.1 | 4.8 | 0.5 | 0.1 | 0.6 | 3.7 | 0.6 | 4.3 | 0.5 | 0.1 | 0.6 |
SO42− | 5.8 | 1.7 | 7.5 | 1.3 | 0.5 | 1.8 | 5.8 | 2.9 | 8.7 | 1.3 | 1.0 | 2.3 |
Na+ | 1.6 | 0.5 | 2.1 | 1.6 | 0.5 | 2.1 | 1.6 | 1.0 | 2.6 | 1.6 | 0.5 | 2.1 |
K+ | 5.2 | 1.5 | 6.7 | 0.6 | 0.3 | 0.9 | 5.2 | 1.0 | 6.2 | 0.6 | 0.3 | 0.9 |
Ca2+ | 5.6 | 1.6 | 7.2 | 3.6 | 1.5 | 5.1 | 5.6 | 2.6 | 8.2 | 3.6 | 0.6 | 4.2 |
Mg2+ | 1.0 | 0.3 | 1.3 | 0.9 | 0.2 | 1.1 | 1.0 | 0.7 | 1.7 | 0.9 | 0.2 | 1.1 |
Parameter | T0 | T2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Applied | Leached | Applied | Leached | |||||||||
C | R | T | C | R | T | C | R | T | C | R | T | |
Water | 27.3 | 12.3 | 39.6 | 6.3 | 2.9 | 9.2 | 27.3 | 6.2 | 33.4 | 6.3 | 2.9 | 9.2 |
Cl− | 3.3 | 1.9 | 5.2 | 3.7 | 1.9 | 5.6 | 3.3 | 8.1 | 11.4 | 3.7 | 2.4 | 6.1 |
NO3− | 16.1 | 9.1 | 25.2 | 2.3 | 2.6 | 4.9 | 16.1 | 2.2 | 18.3 | 2.3 | 0.2 | 2.5 |
H2PO4− | 3.7 | 2.1 | 5.8 | 0.5 | 0.1 | 0.6 | 3.7 | 0.8 | 4.5 | 0.5 | 0.1 | 0.6 |
SO42− | 5.8 | 3.3 | 9.1 | 1.3 | 1.0 | 2.3 | 5.8 | 3.5 | 9.3 | 1.3 | 1.9 | 3.2 |
Na+ | 1.6 | 0.9 | 2.5 | 1.6 | 0.8 | 2.4 | 1.6 | 2.0 | 3.6 | 1.6 | 0.8 | 2.4 |
K+ | 5.2 | 2.9 | 8.1 | 0.6 | 0.6 | 1.2 | 5.2 | 1.1 | 6.2 | 0.6 | 0.3 | 0.9 |
Ca2+ | 5.6 | 3.2 | 8.8 | 3.6 | 3.1 | 6.7 | 5.6 | 3.6 | 9.2 | 3.6 | 0.8 | 4.4 |
Mg2+ | 1.0 | 0.6 | 1.6 | 0.9 | 0.5 | 1.4 | 1.0 | 1.1 | 2.1 | 0.9 | 0.2 | 1.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Caparrós, P.; Llanderal, A.; Maksimovic, I.; Lao, M.T. Cascade Cropping System with Horticultural and Ornamental Plants under Greenhouse Conditions. Water 2018, 10, 125. https://doi.org/10.3390/w10020125
García-Caparrós P, Llanderal A, Maksimovic I, Lao MT. Cascade Cropping System with Horticultural and Ornamental Plants under Greenhouse Conditions. Water. 2018; 10(2):125. https://doi.org/10.3390/w10020125
Chicago/Turabian StyleGarcía-Caparrós, Pedro, Alfonso Llanderal, Ivana Maksimovic, and María Teresa Lao. 2018. "Cascade Cropping System with Horticultural and Ornamental Plants under Greenhouse Conditions" Water 10, no. 2: 125. https://doi.org/10.3390/w10020125
APA StyleGarcía-Caparrós, P., Llanderal, A., Maksimovic, I., & Lao, M. T. (2018). Cascade Cropping System with Horticultural and Ornamental Plants under Greenhouse Conditions. Water, 10(2), 125. https://doi.org/10.3390/w10020125