Geospatial Modeling of River Systems
Abstract
:1. Introduction
1.1. Geomorphological Processes
1.2. Geomorphology and Ecology
1.3. Channel Planform and Physical Habitats
1.4. River Ecosystem Models and Geospatial Modelling
1.5. Response Unit Theory and Development of Geomorphic Response Units (GRU)
2. Contributions
2.1. In-Stream Geomorphology
2.2. River Basin Geomorphology
2.3. Data Management for Geospatial Modelling
3. Conclusions
3.1. Synopsis
3.2. Limitations and Future Directions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Knighton, D. Fluvial Forms & Processes: A New Perspective; Hodder Arnold: London, UK, 1998. [Google Scholar]
- Wohl, E. Rivers in the Landscape: Science and Management; Wiley-Blackwell: Hoboken, NJ, USA, 2014. [Google Scholar]
- Power, M. The predictive validation of ecological and environmental models. Ecol. Model. 1993, 68, 33–50. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Stromberg, J.C. The natural flow regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The flood pulse concept in river-floodplain systems. In Proceedings of the International Large River Symposium, Honey Harbour, ON, Canada, 14–21 September 1986; Dodge, D.P., Ed.; Canadian Special Publication of Fisheries and Aquatic Sciences 106; Department of Fisheries and Oceans: Ottawa, ON, Canada, 1989; pp. 110–127. [Google Scholar]
- Schumm, S.A. River Variability and Complexity; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Katopodis, C. Case studies of instream flow modelling for fish habitat in Canadian Prairie Rivers. Can. Water Resour. J. 2003, 28, 199–216. [Google Scholar] [CrossRef]
- Allan, J.D.; Castillo, M.M. Stream Ecology: Structure and Function of Running Waters; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Kochel, R.C. Geomorphic impact of large floods: Review and new perspectives on magnitude and frequency. In Flood Geomorphology; Baker, V.R., Kochel, R.C., Patton, P.C., Eds.; Wiley: New York, NY, USA, 1988; pp. 169–187. [Google Scholar]
- Walters, D.M.; Leigh, D.S.; Freeman, M.C.; Freeman, B.J.; Pringle, C.M. Geomorphology and fish assemblages in a Piedmont river basin, USA. Freshw. Biol. 2003, 48, 1950–1970. [Google Scholar] [CrossRef]
- D’Ambrosio, J.L.; Williams, L.R.; Witter, J.D.; Ward, A. Effects of geomorphology, habitat, and spatial location on fish assemblages in a watershed in Ohio, USA. Environ. Monit. Assess. 2009, 148, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Thorp, J.H.; Thoms, M.C.; Delong, M.D. The riverine ecosystem synthesis: Biocomplexity in river networks across space and time. River Res. Appl. 2006, 22, 123–147. [Google Scholar] [CrossRef]
- Bizzi, S.; Lerner, D.N. Characterizing physical habitats in rivers using map-derived drivers of fluvial geomorphic processes. Geomorphology 2012, 169–170, 64–73. [Google Scholar] [CrossRef]
- Duncan, W.W.; Goodloe, R.B.; Meyer, J.L.; Prowell, E.S. Does channel incision affect in-stream habitat? Examining the effects of multiple geomorphic variables on fish habitat. Restor. Ecol. 2011, 19, 64–73. [Google Scholar] [CrossRef]
- James, A.B.W.; Henderson, I.M. Comparison of coarse particulate organic matter retention in meandering and straightened sections of a third-order New Zealand stream. River Res. Appl. 2005, 21, 641–650. [Google Scholar] [CrossRef]
- Hoover, T.M.; Richardson, J.S.; Yonemitsu, N. Flow-substrate interactions create and mediate leaf litter resource patches in streams. Freshw. Biol. 2006, 51, 435–447. [Google Scholar] [CrossRef]
- Thomson, J.R.; Taylor, M.P.; Fryirs, K.A.; Brierley, G.J. A geomorphological framework for river characterization and habitat assessment. Aquat. Conserv. Mar. Freshw. Ecosyst. 2001, 11, 373–389. [Google Scholar] [CrossRef]
- Keithan, E.D.; Lowe, R.L. Primary productivity and spatial structure of phytolitic growth in streams in the Great Smoky Mountains National Park, Tennessee. Hydrobiologia 1985, 123, 59–67. [Google Scholar] [CrossRef]
- Pridmore, R.D.; Roper, D.S. Comparison of the macroinvertebrate faunas of runs and riffles in three New Zealand Streams. N. Z. J. Mar. Freshw. Res. 1985, 19, 283–291. [Google Scholar] [CrossRef]
- McCulloch, D.L. Benthic macroinvertebrate distributions in the riffle-pool communities of two east Texas streams. Hydrobiologia 1986, 135, 61–70. [Google Scholar] [CrossRef]
- Hose, G.C.; Jones, P.; Lim, R.P. Hyporheic macroinvertebrates in riffle and pool areas of temporary streams in south eastern Australia. Hydrobiologia 2005, 532, 81–90. [Google Scholar]
- Braaten, P.J.; Berry, C.R. Fish associations with four habitat types in a South Dakota prairie stream. J. Freshw. Ecol. 1997, 12, 477–489. [Google Scholar] [CrossRef]
- Chessman, B.C.; Fryirs, K.A.; Brierley, G.J. Linking geomorphic character, behaviour and condition to fluvial biodiversity: Implications for river management. Aquat. Conserv. Mar. Freshw. Ecosyst. 2006, 16, 267–288. [Google Scholar] [CrossRef]
- Sullivan, S.M.P.; Watzin, M.C.; Hession, W.C. Influence of stream geomorphic condition on fish communities in Vermont, U.S.A. Freshw. Biol. 2006, 51, 1811–1826. [Google Scholar] [CrossRef]
- Schlosser, I.J. Stream fish ecology: A landscape perspective. BioScience 1991, 41, 704–712. [Google Scholar] [CrossRef]
- Rabeni, C.F.; Minshall, G.W. Factors affecting microdistribution of stream benthic insects. Oikos 1977, 29, 33–43. [Google Scholar] [CrossRef]
- Peckarsky, B.L.; Dodson, S.I. An experimental analysis of biological factors contributing to stream community structure. Ecology 1980, 61, 1283–1290. [Google Scholar] [CrossRef]
- Stewart, K.W.; Watkinson, D.A. The Freshwater Fishes of Manitoba; University of Manitoba Press: Winnipeg, MB, Canada, 2004. [Google Scholar]
- COSEWIC. COSEWIC Assessment and Update Status Report on the Lake Sturgeon Acipenser Fulvescens in Canada; Committee on the Status of Endangered Wildlife in Canada: Ottawa, ON, Canada, 2006; Volume xi, 107p. [Google Scholar]
- Pfeiffer, R.A. Studies on the life history of the Rosyface Shiner, Notropis rubellus. Copeia 1955, 1955, 95–104. [Google Scholar] [CrossRef]
- Watkinson, D.A.; Sawatzky, C.D. Information in support of a recovery potential assessment of Carmine Shiner (Notropis percobromus). Canadian Science Advisory Secretariat (CSAS); Department of Fisheries and Oceans: Ottawa, ON, Canada, 2013; iv, 16p. Available online: http://waves-vagues.dfo-mpo.gc.ca/Library/348715.pdf (accessed on 7 March 2018).
- Zamor, R.M.; Grossman, G.D. Turbidity affects foraging success of drift-feeding Rosyside Dace. Trans. Am. Fish. Soc. 2007, 136, 167–176. [Google Scholar] [CrossRef]
- Chiotti, J.A.; Holtgren, J.M.; Auer, N.A.; Ogren, S.A. Lake sturgeon spawning habitat in the Big Manistee River, Michigan. N. Am. J. Fish. Manag. 2008, 28, 1009–1019. [Google Scholar] [CrossRef]
- Baldwin, M.E. Habitat Use, Distribution, Life History, and Interspecific Associations of Notropis photogenis (Silver Shiner; Osteichthyes: Cyprinidae) in Canada, with Comparisons with Notropis rubellus (Rosyface Shiner). Master’s Thesis, Department of Biology, Carleton University, Ottawa, ON, Canada, 1983; 128p. [Google Scholar]
- Kempinger, J.J. Spawning and early life history of the lake sturgeon in the Lake Winnebago system, Wisconsin. Am. Fish. Soc. Symp. 1988, 5, 110–122. [Google Scholar]
- Scott, W.B.; Crossman, E.J. Freshwater Fishes of Canada Bulletin 184; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1973.
- Baxter, C.V.; Hauer, F.R. Geomorphology, hyporheic exchange, and selection of spawning habitat by Bull Trout (Salvelinus confluentus). Can. J. Fish. Aquat. Sci. 2000, 57, 1470–1481. [Google Scholar] [CrossRef]
- Fausch, K.D.; Torgersen, C.E.; Baxter, C.V.; Li, H.W. Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes. BioScience 2002, 52, 483–498. [Google Scholar] [CrossRef]
- Brewer, S.K.; Papoulias, D.M.; Rabeni, C.F. Spawning habitat associations and selection by fishes in a flow-regulated Prairie river. Trans. Am. Fish. Soc. 2006, 135, 763–778. [Google Scholar] [CrossRef]
- Beebe, J.T. Fluid speed variability and the importance to managing fish habitat in rivers. Regul. Rivers Res. Manag. 1996, 12, 63–79. [Google Scholar] [CrossRef]
- Rhoads, B.L.; Schwartz, J.S.; Porter, S. Stream geomorphology, bank vegetation, and three-dimensional habitat hydraulics for fish in Midwestern agricultural streams. Water Resour. Res. 2003, 39, 1218. [Google Scholar] [CrossRef]
- Yu, B.; Wolman, M.G. Some dynamic aspects of river geometry. Water Resour. Res. 1987, 23, 501–509. [Google Scholar] [CrossRef]
- Osterkamp, W.R.; Hedman, E.R. Perennial Streamflow Characteristics Related to Channel Geometry and Sediment in Missouri River Basin; U.S. Geological Professional Paper; USGS: Reston, VA, USA, 1982; Volume 1242, 37p.
- Dauwalter, D.C.; Splinter, D.K.; Fisher, W.L.; Marston, R.A. Biogeography, ecoregions, and geomorphology affect fish species composition in streams of eastern Oklahoma, USA. Environ. Biol. Fishes 2007, 82, 237–249. [Google Scholar] [CrossRef]
- Frothingham, K.M.; Rhoads, B.L.; Herricks, E.E. A multiscale conceptual framework for integrated ecogeomorphological research to support stream naturalization in the agricultural Midwest. Environ. Manag. 2002, 29, 16–33. [Google Scholar] [CrossRef]
- McIlroy, S.K.; Montagne, C.; Jones, C.A.; McGlynn, B.L. Identifying linkages between land use, geomorphology, and aquatic habitat in a mixed-use watershed. Environ. Manag. 2008, 42, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, F.; Swanson, F.J. Distribution of coarse woody debris in a mountain stream, western Cascade Range, Oregon. Can. J. For. Res. 1994, 24, 2395–2403. [Google Scholar] [CrossRef]
- Montgomery, K. Sinuosity and fractal dimension of meandering rivers. Area 1996, 28, 491–500. [Google Scholar]
- Nikora, V.I. Fractal structures of river plan forms. Water Resour. Res. 1991, 27, 1327–1333. [Google Scholar] [CrossRef]
- Snow, R.S. Fractal sinuosity of stream channels. Pure Appl. Geophys. 1989, 131, 99–109. [Google Scholar] [CrossRef]
- Shen, X.H.; Zou, L.J.; Zhang, G.F.; Su, N.; Wu, W.Y.; Yang, S.F. Fractal characteristics of the main channel of Yellow River and its relation to regional tectonic evolution. Geomorphology 2011, 127, 64–70. [Google Scholar] [CrossRef]
- Beauvais, A.; Dubois, J.; Badri, A. Fractal analysis applied to river planforms: Method of Richardson. Comptes Rendus De L Acad. Sci. Ser. II 1994, 318, 219–225. [Google Scholar]
- Hynes, H.B. The Ecology of Running Waters; University of Toronto Press: Toronto, ON, Canada, 1970. [Google Scholar]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Ward, J.V. The four-dimensional nature of lotic ecosystems. J. N. Am. Benthol. Soc. 1989, 8, 2–9. [Google Scholar] [CrossRef]
- Thorp, J.H.; Delong, M.D. The riverine productivity model: An heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 1994, 70, 305–308. [Google Scholar] [CrossRef]
- Humphries, P.; Keckeis, H.; Finlayson, B. The river wave concept: Integrating river ecosystem models. BioScience 2014, 64, 870–882. [Google Scholar] [CrossRef]
- Tyus, H.M. Ecology and Conservation of Fishes; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2012. [Google Scholar]
- Thorp, J.H.; Thoms, M.C.; Delong, M.D. The Riverine Ecosystem Synthesis: Toward Conceptual Cohesiveness in River Science; Elsevier: Boston, MA, USA, 2008. [Google Scholar]
- Becker, A.; Braun, P. Disaggregation, aggregation and spatial scaling in hydrological. J. Hydrol. 1999, 217, 239–252. [Google Scholar] [CrossRef]
- Cammeraat, L.H. A review of two strongly contrasting geomorphological systems within the context of scale. Earth Surf. Process. Landf. 2002, 27, 1201–1222. [Google Scholar] [CrossRef]
- Flügel, W.A. Combining GIS with regional hydrological modelling using hydrological response units (HRUs): An application from Germany. Math. Comput. Simul. 1997, 43, 297–304. [Google Scholar] [CrossRef]
- Güntner, A.; Bronstert, A. Representation of landscape variability and lateral redistribution processes for large-scale hydrological modelling in semi-arid areas. J. Hydrol. 2004, 297, 136–161. [Google Scholar] [CrossRef]
- Sidorchuk, A.; Marker, M.; Moretti, S.; Rodolfi, G. Gully erosion modelling and landscape response in the Mbuluzi River catchment of Swaziland. Catena 2003, 50, 507–525. [Google Scholar] [CrossRef]
- Devito, K.; Creed, I.; Gan, T.; Mendoza, C.; Petrone, R.; Silins, U.; Smerdon, B. A framework for broad-scale classification of hydrologic response units on the Boreal Plain: Is topography the last thing to consider? Hydrol. Process. 2005, 19, 1705–1714. [Google Scholar] [CrossRef]
- Lindenschmidt, K.-E.; Long, J. A GIS approach to define the hydro-geomorphological regime for instream flow requirements using geomorphic response units (GRU). River Syst. 2013, 20, 261–275. [Google Scholar] [CrossRef]
- Carbonneau, P.; Fonstad, M.A.; Marcus, W.A.; Dugdale, S.J. Making riverscapes real. Geomorphology 2012, 137, 74–86. [Google Scholar] [CrossRef]
- Church, M.; Ferguson, R.I. Morphodynamics: Rivers beyond steady state. Water Resour. Res. 2015, 51, 1883–1897. [Google Scholar] [CrossRef]
- Carbonneau, P.E.; Piégay, H. Fluvial Remote Sensing for Science and Management; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Brierley, G.J.; Fryirs, K.A. Geomorphology and River Management: Applications of the River Styles Framework; Blackwell Publishing: Hoboken, NJ, USA, 2008. [Google Scholar]
- Fryirs, K.A.; Brierley, G.J. Geomorphic Analysis of River Systems: An Approach to Reading the Landscape; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Bishop, M.P.; James, L.A.; Shroder, J.F.; Walsh, S.J. Geospatial technologies and digital geomorphological mapping: Concepts, issues and research. Geomorphology 2012, 137, 5–26. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Fryirs, K.A.; Brierley, G.; Bangen, S.G.; Bouwes, N.; O’Brien, G. Geomorphic mapping and taxonomy of fluvial landforms. Geomorphology 2015, 248, 273–295. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Piégay, H. Tools in Fluvial Geomorphology: Problem Statement and Recent Practice; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Hosseini, N.; Chun, K.P.; Lindenschmidt, K.-E. Quantifying Spatial Changes in the Structure of Water Quality Constituents in a Large Prairie River within Two Frameworks of a Water Quality Model. Water 2016, 8, 158. [Google Scholar] [CrossRef]
- Meissner, A.C.N.; Carr, M.K.; Phillips, I.D.; Lindenschmidt, K.-E. Using a Geospatial Model to Relate Fluvial Geomorphology to Macroinvertebrate Habitat in a Prairie River—Part 2: Matching Family-Level Indices to Geomorphological Response Units (GRUs). Water 2016, 8, 107. [Google Scholar] [CrossRef]
- Meissner, A.G.N.; Carr, M.K.; Phillips, I.D.; Lindenschmidt, K.-E. Using a Geospatial Model to Relate Fluvial Geomorphology to Macroinvertebrate Habitat in a Prairie River—Part 1: Genus-Level Relationships with Geomorphic Typologies. Water 2016, 8, 42. [Google Scholar] [CrossRef]
- Doll, B.; Jennings, G.; Spooner, J.; Penrose, D.; Usset, J.; Blackwell, J.; Fernandez, M. Identifying Watershed, Landscape, and Engineering Design Factors that Influence the Biotic Condition of Restored Streams. Water 2016, 8, 151. [Google Scholar] [CrossRef]
- Qiu, S.; Liang, X.; Xiao, C.; Huang, H.; Fang, Z.; Lv, F. Numerical Simulation of Groundwater Flow in a River Valley Basin in Jilin Urban Area, China. Water 2015, 7, 5768–5787. [Google Scholar] [CrossRef]
- Chang, C.-H.; Harrison, J.F.; Huang, Y.C. Modeling Typhoon-Induced Alterations on River Sediment Transport and Turbidity Based on Dynamic Landslide Inventories: Gaoping River Basin, Taiwan. Water 2015, 7, 6910–6930. [Google Scholar] [CrossRef]
- Fuchs, S.; Kaiser, M.; Kiemle, L.; Kittlaus, S.; Rothvoß, S.; Toshovski, S.; Wagner, A.; Wander, R.; Weber, T.; Ziegler, S. Modeling of Regionalized Emissions (MoRE) into Water Bodies: An Open-Source River Basin Management System. Water 2017, 9, 239. [Google Scholar] [CrossRef]
- Chowdhury, E.H.; Hassan, Q.K.; Achari, G.; Gupta, A. Use of Bathymetric and LiDAR Data in Generating Digital Elevation Model over the Lower Athabasca River Watershed in Alberta, Canada. Water 2017, 9, 19. [Google Scholar] [CrossRef]
- Ward, J.V.; Stanford, J.A. The serial discontinuity concept of lotic ecosystems. In Dynamics of Lotic Ecosystems; Fontaine, T.D., III, Bartell, S.M., Eds.; Ann Arbor Science Publisher: Ann Arbor, MI, USA, 1983; pp. 43–68. [Google Scholar]
- Kwak, T.J.; Peterson, J.T. Community Indices, Parameters, and Comparisons. In Analysis and Interpretation of Freshwater Fisheries Data; Guy, C.S., Brown, M.B., Eds.; American Fisheries Society: Bethesda, MD, USA, 2007; pp. 677–763. [Google Scholar]
- Hayes, D.B.; Ferreri, C.P.; Taylor, W.W. Active fish capture methods. In Fisheries Techniques, 2nd ed.; Murphy, B.R., Willis, D.W., Eds.; American Fisheries Society: Bethesda, MD, USA, 1996; pp. 193–220. [Google Scholar]
- Portt, C.B.; Coker, G.A.; Ming, D.L.; Randall, R.G. A Review of Fish Sampling Methods Commonly Used in Canadian Freshwater Habitats; Canadian Technical Report of Fisheries and Aquatic Sciences, Issue 2604; Department of Fisheries and Oceans: Ottawa, ON, Canada, 2006; 51p. Available online: http://publications.gc.ca/collections/collection_2012/mpo-dfo/Fs97-6-2604-eng.pdf (accessed on 7 March 2018).
- Bayley, P.B.; Dowling, D.C. Gear Efficiency Calibrations for Stream and River Sampling; Illinois Natural History Survey, Aquatic Ecology Technical Report 90/08; INHS Center for Aquatic Ecology: Champaign, IL, USA, 1990. [Google Scholar]
- Diana, J.S. Biology and Ecology of Fishes, 2nd ed.; Biological Science Press, Cooper Pub. Group: Traverse City, MI, USA, 2004. [Google Scholar]
- Rolls, R.J.; Leigh, C.; Sheldon, F. Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration. Freshw. Sci. 2012, 31, 1163–1186. [Google Scholar] [CrossRef]
- Carr, M.K.; Watkinson, D.A.; Svendsen, J.C.; Enders, E.C.; Long, J.; Lindenschmidt, K.-E. Geospatial modelling of the Birch River: Spawning distribution of Carmine Shiner (Notropis percobromus) in Geomorphic Response Units (GRU). Int. Rev. Hydrobiol. 2015, 100, 1–12. [Google Scholar] [CrossRef]
- Nunn, A.D.; Copp, G.H.; Vilizzi, L.; Carter, M.G. Seasonal and diel patterns in the migrations of fishes between a river and a floodplain tributary. Ecol. Freshw. Fish 2010, 19, 153–162. [Google Scholar] [CrossRef]
- Carr, M.; Lacho, C.; Pollock, M.; Watkinson, D.; Lindenschmidt, K.-E. Development of geomorphic typologies for identifying Lake Sturgeon (Acipenser fulvescens) habitat in the Saskatchewan River System. River Syst. 2015, 21, 215–227. [Google Scholar] [CrossRef]
- Auer, N.A. Importance of habitat and migration to sturgeons with emphasis on lake sturgeon. Can. J. Fish. Aquat. Sci. 1996, 53, 152–160. [Google Scholar] [CrossRef]
- WSA. Saskatchewan River Sturgeon Report 2012; Water Security Agency: Moose Jaw, SK, Canada, 2013. [Google Scholar]
- SWA. Saskatchewan River Sturgeon Report 2010; Saskatchewan Watershed Authority: Moose Jaw, SK, Canada, 2011.
- SWA. Saskatchewan River Sturgeon Report 2011; Saskatchewan Watershed Authority: Moose Jaw, SK, Canada, 2012.
- Wallace, R.G. Species Recovery Plan for Lake Sturgeon in the Lower Saskatchewan River (Cumberland Lake Area); Fisheries Technical Report 91-3; Fisheries Branch Saskatchewan Parks and Renewable Resources: Regina, SK, Canada, 1991; 51p. [Google Scholar]
- Carr, M.K.; Watkinson, D.A.; Lindenschmidt, K.-E. Identifying Links between Geomorphic Response Units (GRU) and Fish Species in the Assiniboine River, Manitoba. Ecohydrology 2016, 9, 1154–1165. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindenschmidt, K.-E.; Carr, M.K. Geospatial Modeling of River Systems. Water 2018, 10, 282. https://doi.org/10.3390/w10030282
Lindenschmidt K-E, Carr MK. Geospatial Modeling of River Systems. Water. 2018; 10(3):282. https://doi.org/10.3390/w10030282
Chicago/Turabian StyleLindenschmidt, Karl-Erich, and Meghan Kathleen Carr. 2018. "Geospatial Modeling of River Systems" Water 10, no. 3: 282. https://doi.org/10.3390/w10030282
APA StyleLindenschmidt, K. -E., & Carr, M. K. (2018). Geospatial Modeling of River Systems. Water, 10(3), 282. https://doi.org/10.3390/w10030282