Improving the Distillate Prediction of a Membrane Distillation Unit in a Trigeneration Scheme by Using Artificial Neural Networks
Abstract
:1. Introduction
2. System Description
2.1. Trigeneration Unit Based on RES
2.2. PGMD Preliminary Distillate Prediction
2.3. PGMD Experimental Validation
3. ANN Model
- Data preprocessing: Data from the automata were prepared. Some outliers in data were identified and eliminated. Inputs and outputs were carefully reviewed to provide valuable information, avoid noise and to assure the correct prediction of the ANN.
- Structure selection: The architecture of the ANN model includes three inputs, one hidden layer and one output layer with a single neuron. A small sized ANN was preferred in order to facilitate exportation and therefore to consume fewer computational resources.
- Inputs and targets are normalized following this equation:
- Training: The training phase is performed by constantly updating weights and biases to achieve a certain Mean Square Error (MSE, at least 0.5) and Coefficient of Determination R (at least 0.95). In this phase, 90% of the available samples were taken.
- Validation and testing: The 10% remaining available samples were chosen for validation and testing. In both stages of the ANN creation, a minimum value of 0.95 is required for R.
- Development: After the learning phase, the optimal values of the weights and biases are saved, and the ANN is developed
- Exportation: Once the ANN has proved to provide most accurate values of the PGMD production, the model is exported if it is going to be used in any other applications.
3.1. Parametric Modelization of the ANN Performance
3.1.1. Number of Neurons in Hidden Layer
3.1.2. Dataset Collection
3.1.3. Activation Function in the Hidden Layer
3.2. ANN Fitting Model to Compute PGMD Production
3.3. ANN Validation
3.4. ANN Application
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
Acronyms | |
AGMD | Air Gap Membrane Distillation |
ANN | Artificial Neural Network |
DCMD | Direct Contact Membrane Distillation |
ETC | Evacuated Tubes Collector |
MED | Multi-Effect Distillation |
MD | Membrane Distillation |
MSE | Mean Square Error |
MSF | Multi Stage Flash distillation |
PGMD | Permeate Gap Membrane Distillation |
PVT | Photovoltaic Thermal Collector |
RES | Renewable Energy Systems |
RO | Reverse Osmosis |
RSM | Response Surface Methodology |
SGMD | Sweep Gas Membrane Distillation |
SHW | Sanitary Hot Water |
SSR | Residual sum of squares |
SST | Total sum of squares |
TDS | Total Dissolved Solids |
VMD | Vacuum Membrane Distillation |
Symbols | |
n | Neurons in hidden layer |
N | Neurons in input layer |
R | Coefficient of determination |
T | Temperature |
x | Input |
y | Output function, predicted value |
w | Weight |
Subscripts | |
ci | Condenser inlet |
ei | Evaporator inlet |
I | Input |
0 | Biass |
References
- Khalifa, A.E.; Alawad, S.M.; Antar, M.A. Parallel and series multistage air gap membrane distillation. Desalination 2017, 417, 69–76. [Google Scholar] [CrossRef]
- Đurin, B.; Margeta, J. Analysis of the possible use of solar photovoltaic energy in urban water supply systems. Water 2014, 6, 1546–1561. [Google Scholar] [CrossRef]
- Gao, L.; Yoshikawa, S.; Iseri, Y.; Fujimori, S.; Kanae, S. An economic assessment of the global potential for seawater desalination to 2050. Water 2017, 9, 763. [Google Scholar] [CrossRef]
- González, D.; Amigo, J.; Suárez, F. Membrane distillation: Perspectives for sustainable and improved desalination. Renew. Sustain. Energy Rev. 2017, 80, 238–259. [Google Scholar] [CrossRef]
- Caldera, U.; Bogdanov, D.; Afanasyeva, S.; Breyer, C. Role of seawater desalination in the management of an integrated water and 100% renewable energy based power sector in Saudi Arabia. Water 2018, 10, 3. [Google Scholar] [CrossRef]
- Janajreh, I.; El Kadi, K.; Hashaikeh, R.; Ahmed, R. Numerical investigation of air gap membrane distillation (AGMD): Seeking optimal performance. Desalination 2017, 424, 122–130. [Google Scholar] [CrossRef]
- Acevedo, L.; Uche, J.; Del Amo, A.; Cirez, F.; Usón, S.; Martínez, A.; Guedea, I. Dynamic simulation of a trigeneration scheme for domestic purposes Based on hybrid techniques. Energies 2016, 9, 1013. [Google Scholar] [CrossRef]
- Camacho, L.; Dumée, L.; Zhang, J.; Li, J.; Duke, M.; Gomez, J.; Gray, S. Advances in membrane distillation for water desalination and purification applications. Water 2013, 5, 94–196. [Google Scholar] [CrossRef]
- Eykens, L.; Reyns, T.; De Sitter, K.; Dotremont, C.; Pinoy, L.; Van der Bruggen, B. How to select a membrane distillation configuration? Process conditions and membrane influence unraveled. Desalination 2016, 399, 105–115. [Google Scholar] [CrossRef]
- Alklaibi, A.M.; Lior, N. Transport analysis of air-gap membrane distillation. J. Membr. Sci. 2005, 255, 239–253. [Google Scholar] [CrossRef]
- Khayet, M. Membranes and theoretical modeling of membrane distillation: A review. Adv. Colloid Interface Sci. 2001, 164, 56–88. [Google Scholar] [CrossRef] [PubMed]
- Ugrozov, V.V.; Elkina, I.B.; Nikulin, V.N.; Kataeva, L.I. Theoretical and experimental research of liquid-gap membrane distillation process in membrane module. Desalination 2003, 157, 325–331. [Google Scholar] [CrossRef]
- Winter, D.; Koschikowsky, J.; Wieghaus, M. Desalination using membrane distillation: Experimental studies on full scale spiral wound modules. J. Membr. Sci. 2011, 375, 104–112. [Google Scholar] [CrossRef]
- Khayet, M.; Matsuura, T. Membrane Distillation Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2011; pp. 249–293. ISBN 978-0-4445-3126-1. [Google Scholar]
- Cao, W.; Liu, Q.; Wang, Y.; Mujtaba, I.M. Modeling and simulation of VMD desalination process by ANN. Comput. Chem. Eng. 2016, 84, 96–103. [Google Scholar] [CrossRef]
- Alpaydin, E. Introduction to Machine Learning, 2nd ed.; MIT Press: Cambridge, MA, USA, 2009; pp. 233–275. ISBN 978-0-262-01243-0. [Google Scholar]
- Samarasinghe, S. Neural Networks for Applied Sciences and Engineering; Auerbach Publications: New York, NY, USA, 2006; pp. 11–67. ISBN 978-0-8493-3375-0. [Google Scholar]
- Mackay, D. Information Theory, Inference, and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2005; pp. 233–258. ISBN 978-0-5216-4298-9. [Google Scholar]
- Kalogirou, S.A. Applications of artificial neural-networks for energy systems. Appl. Energy 2000, 67, 17–35. [Google Scholar] [CrossRef]
- Pasini, A.; Langone, R. Attribution to precipitation changes on a regional scale by network modeling: A case study. Water 2010, 2, 321–332. [Google Scholar] [CrossRef]
- Kim, S.; Singh, V. Spatial disaggregation of areal rainfall using two different artificial neural networks models. Water 2015, 7, 2707–2727. [Google Scholar] [CrossRef]
- Jiao, G.; Guo, T.; Ding, Y. A new hybrid forecasting approach applied to hydrological data: A case study on precipitation in Northwestern China. Water 2016, 8, 367. [Google Scholar] [CrossRef]
- Bogner, K.; Liechti, K.; Zappa, M. Post-processing of stream flows in Switzerland with an emphasis on low flows and floods. Water 2016, 8, 115. [Google Scholar] [CrossRef]
- Wang, J.; Shi, P.; Jiang, P.; Hu, J.; Qu, S.; Chen, X.; Chen, Y.; Dai, Y.; Xiao, Z. Application of BP neural network algorithm in traditional hydrological model for flood forecasting. Water 2017, 9, 48. [Google Scholar] [CrossRef]
- Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J.; Pulido-Velazquez, D.; Cecilia, J. Estimation of instantaneous peak flow using machine-learning models and empirical formula in peninsular Spain. Water 2017, 9, 347. [Google Scholar] [CrossRef]
- Taravat, A.; Rajaei, M.; Emadodin, I.; Hasheminejad, H.; Mousavian, R.; Biniyaz, E. A spaceborne multisensory, multitemporal approach to monitor water level and storage variations of lakes. Water 2016, 8, 478. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, F.; Yang, Z. Comparative analysis of ANN and SVM models combined with wavelet preprocess for groundwater depth prediction. Water 2017, 9, 781. [Google Scholar] [CrossRef]
- Jang, D.; Choi, G. Estimation of non-revenue water ratio using MRA and ANN in water distribution networks. Water 2018, 10, 2. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, L.; Cheng, K.; Zhang, H. A new approach to performance analysis of a seawater desalination system by an artificial neural network. Desalination 2007, 205, 147–155. [Google Scholar] [CrossRef]
- Aish, A.M.; Zaqoot, H.A.; Abdeljawad, S.M. Artificial neural network approach for predicting reverse osmosis desalination plants performance in the Gaza Strip. Desalination 2015, 367, 240–247. [Google Scholar] [CrossRef]
- Cabrera, P.; Carta, J.A.; González, J.; Melián, G. Artificial neural networks applied to manage the variable operation of a simple seawater reverse osmosis plant. Desalination 2017, 416, 140–156. [Google Scholar] [CrossRef]
- Cabrera, P.; Carta, J.A.; González, J.; Melián, G. Wind-driven SWRO desalination prototype with and without batteries: A performance simulation using machine learning models. Desalination 2017. [CrossRef]
- Barello, M.; Manca, D.; Patel, R.; Mujtaba, I.M. Neural network based correlation for estimating water permeability constant in RO desalination process under fouling. Desalination 2014, 345, 101–111. [Google Scholar] [CrossRef]
- Khayet, M.; Cojocaru, C.; Essalhi, M. Artificial neural network modeling and response surface methodology of desalination by reverse osmosis. J. Membr. Sci. 2011, 368, 202–214. [Google Scholar] [CrossRef]
- Khayet, M.; Cojocaru, C. Artificial neural network modeling and optimization of desalination by air gap membrane distillation. Sep. Purif. Technol. 2012, 86, 171–182. [Google Scholar] [CrossRef]
- Khayet, M.; Cojocaru, C. Artificial neural network model for desalination by sweeping gas membrane distillation. Desalination 2013, 308, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Magnier, L.; Haghighat, F. Multi-objective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network. Build. Environ. 2010, 45, 739–746. [Google Scholar] [CrossRef]
- Asadi, E.; Gameiro da Silva, M.; Antunes, C.H.; Dias, L.; Glicksman, L. Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy Build. 2014, 81, 444–456. [Google Scholar] [CrossRef]
- Buratti, C.; Orestano, F.C.; Palladino, D. Comparison of the energy performance of existing buildings by means of dynamic simulations and artificial neural networks. Energy Procedia 2016, 101, 176–183. [Google Scholar] [CrossRef]
- Souliotis, M.; Kalogirou, S.; Tripanagnostopoulos, Y. Modelling of an ICS solar water heater using artificial neural networks and TRNSYS. Renew. Energy 2009, 34, 1333–1339. [Google Scholar] [CrossRef]
- Afram, A.; Janabi-Sharifi, F.; Fung, A.; Raahemifar, K. Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system. Energy Build. 2017, 141, 96–113. [Google Scholar] [CrossRef]
- Bayod, A.; Martínez, A.; Acevedo, L.; Uche, J.; Usón, S. Improved management of battery and fresh water production in grid connected PVT systems in dwellings. In 10th BIWAES Biennial International Workshop Advances in Energy Studies, Naples, Italy, 25–28 September 2017; Ulgiati, S., Vanoli, L., Eds.; Graz University of Technology: Graz, Austria, 2017. [Google Scholar]
- Acevedo, L.; Uche, J.; Usón, S.; Cirez, F.; Martínez, A.; Bayod, A.; Jiang, G. Exergy analysis of the transient simulation of a renewable-based trigeneration scheme for domestic water and energy supply. In 10th BIWAES Biennial International Workshop Advances in Energy Studies, Naples, Italy, 25–28 September 2017; Ulgiati, S., Vanoli, L., Eds.; Graz University of Technology: Graz, Austria, 2017. [Google Scholar]
- Acevedo, L.; Uche, J.; Usón, S.; Jiang, G.; Del Amo, A.; Martínez, A.; Bayod, A. Modelling and simulating a trigeneration plant: Coupling exergy analysis and Trnsys simulation by the creation of new types. In Proceedings of the International Conference on Energy, Environment and Economics, Edinburgh, Scotland, 11–13 December 2017. [Google Scholar]
- Acevedo, L.; Uche, J.; Cirez, F.; Usón, S.; Martínez, A.; Bayod, A. Experimental analysis of a domestic trigeneration scheme feed by photovoltaic/thermal (PVT) collectors. In 10th BIWAES Biennial International Workshop Advances in Energy Studies, Naples, Italy, 25–28 September 2017; Ulgiati, S., Vanoli, L., Eds.; Graz University of Technology: Graz, Austria, 2017. [Google Scholar]
- Beale, M.H.; Hagan, M.T.; Demuth, H.B. Neural Network Toolbox Design Book; MathWorks Inc.: Natick, MA, USA, 2017. [Google Scholar]
- Quintín, M.; Sanatana, Y. Application of Artificial Neural Networks to Regression; La Muralla: Madrid, Spain, 2007; pp. 78–99. ISBN 978-84-7133-767-2. [Google Scholar]
- Winter, D.; Koschikowsky, J.; Ripperger, S. Desalination using membrane distillation: Flux enhancement by feed water deaeration on spiral-wound modules. J. Membr. Sci. 2012, 423–424, 215–224. [Google Scholar] [CrossRef]
Variable | Electric Tests | Solar Tests |
---|---|---|
Data set samples | 372 | 11,272 |
Test number | 18 | 53 |
Average test duration (min) | 118 | 368 |
Feed water (L/h) | 150–500 | 300–500 |
Evaporator inlet temperature (°C) | 60–75 | 60–80 |
Condenser inlet temperature (°C) | 10–30 | 18–30 |
Maximum distillate production (L/h) | 21.12 | 19.48 |
Ambient temperature (°C) | −5–15 | 10–43 |
Solar incident irradiation (W/m2) | -- | 100–1150 |
Wind speed (m/s) | -- | 0–17.2 |
Parameter | Linear Regression | ANN (Electric) | ANN (Solar) | ANN (Both Datasets) |
---|---|---|---|---|
MSE | 30.61 | 10.45 | 0.86 | 0.47 |
R | 0.48 | 0.58 | 0.91 | 0.95 |
Sample | Tei (°C) | Tci (°C) | mfeed (L/h) | mdist (L/h) |
---|---|---|---|---|
65 | 66 | 12 | 200 | 6.48 |
101 | 68 | 19 | 300 | 10.80 |
122 | 61 | 25 | 400 | 12.84 |
133 | 70 | 22 | 500 | 17.76 |
154 | 71 | 16 | 200 | 7.68 |
188 | 69 | 18 | 300 | 11.4 |
219 | 69 | 20 | 400 | 12.60 |
328 | 64 | 20 | 500 | 15.72 |
Sample | Tei (°C) | Tci (°C) | mfeed (L/h) | mdist (L/h) |
---|---|---|---|---|
9 | 77.8 | 24.5 | 470 | 17.5 |
274 | 69.2 | 27.3 | 450 | 12.1 |
510 | 66.4 | 22.2 | 400 | 10.7 |
739 | 61.7 | 25.1 | 320 | 6.0 |
1220 | 66.1 | 21.7 | 300 | 8.0 |
… | … | … | … | … |
7879 | 75.2 | 26.8 | 310 | 9.9 |
8193 | 67.9 | 29.6 | 300 | 6.9 |
10201 | 56.9 | 27.5 | 350 | 4.8 |
10580 | 67.0 | 27.1 | 300 | 6.6 |
11006 | 71.2 | 26.7 | 310 | 8.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acevedo, L.; Uche, J.; Del-Amo, A. Improving the Distillate Prediction of a Membrane Distillation Unit in a Trigeneration Scheme by Using Artificial Neural Networks. Water 2018, 10, 310. https://doi.org/10.3390/w10030310
Acevedo L, Uche J, Del-Amo A. Improving the Distillate Prediction of a Membrane Distillation Unit in a Trigeneration Scheme by Using Artificial Neural Networks. Water. 2018; 10(3):310. https://doi.org/10.3390/w10030310
Chicago/Turabian StyleAcevedo, Luis, Javier Uche, and Alejandro Del-Amo. 2018. "Improving the Distillate Prediction of a Membrane Distillation Unit in a Trigeneration Scheme by Using Artificial Neural Networks" Water 10, no. 3: 310. https://doi.org/10.3390/w10030310
APA StyleAcevedo, L., Uche, J., & Del-Amo, A. (2018). Improving the Distillate Prediction of a Membrane Distillation Unit in a Trigeneration Scheme by Using Artificial Neural Networks. Water, 10(3), 310. https://doi.org/10.3390/w10030310