Previous Land Use Affects the Recovery of Soil Hydraulic Properties after Forest Restoration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site
2.2. Experimental Design
2.3. Soil Sampling and Measurements
2.4. Estimating and Selecting the BEST Algorithm
2.5. Data Analysis
3. Results
3.1. Differences in Soil Attributes among Study Sites
3.2. Estimating and Selecting the BEST Algorithm
3.3. Saturated Soil Hydraulic Conductivity (Ks) Characterization
4. Discussion
4.1. Effects of Land Use on Soil Attributes and Ks
4.2. Management Implications
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Suding, K.; Higgs, E.; Palmer, M.; Callicott, J.B.; Anderson, C.B.; Baker, M.; Gutrich, J.J.; Hondula, K.L.; LaFevor, M.C.; Larson, B.M. Committing to ecological restoration. Science 2015, 348, 638–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chazdon, R.L.; Brancalion, P.H.S.; Lamb, D.; Laestadius, L.; Calmon, M.; Kumar, C. A Policy-Driven Knowledge Agenda for Global Forest and Landscape Restoration: A policy-driven agenda for restoration. Conserv. Lett. 2017, 10, 125–132. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Zimmermann, B.; Elsenbeer, H.; De Moraes, J.M. The influence of land-use changes on soil hydraulic properties: Implications for runoff generation. For. Ecol. Manag. 2006, 222, 29–38. [Google Scholar] [CrossRef]
- Neary, D.G.; Ice, G.G.; Jackson, C.R. Linkages between forest soils and water quality and quantity. For. Ecol. Manag. 2009, 258, 2269–2281. [Google Scholar] [CrossRef]
- Deb, S.K.; Shukla, M.K. Variability of hydraulic conductivity due to multiple factors. Am. J. Environ. Sci. 2012, 8, 489–502. [Google Scholar] [CrossRef]
- Hassler, S.K.; Zimmermann, B.; van Breugel, M.; Hall, J.S.; Elsenbeer, H. Recovery of saturated hydraulic conductivity under secondary succession on former pasture in the humid tropics. For. Ecol. Manag. 2011, 261, 1634–1642. [Google Scholar] [CrossRef]
- Zimmermann, A.; Schinn, D.S.; Francke, T.; Elsenbeer, H.; Zimmermann, B. Uncovering patterns of near-surface saturated hydraulic conductivity in an overland flow-controlled landscape. Geoderma 2013, 195–196, 1–11. [Google Scholar] [CrossRef]
- Soares-Filho, B.; Rajão, R.; Macedo, M.; Carneiro, A.; Costa, W.; Coe, M.; Rodrigues, H.; Alencar, A. Cracking Brazil’s forest code. Science 2014, 344, 363–364. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.; Melo, F.; Tabarelli, M.; Padovesi, A.; Mesquita, C.; de Mattos Scaramuzza, C.; Castro, P.; Carrascosa, H.; Calmon, M.; Rodrigues, R.; et al. Governing and Delivering a Biome-Wide Restoration Initiative: The Case of Atlantic Forest Restoration Pact in Brazil. Forests 2014, 5, 2212–2229. [Google Scholar] [CrossRef]
- Zwartendijk, B.W.; van Meerveld, H.J.; Ghimire, C.P.; Bruijnzeel, L.A.; Ravelona, M.; Jones, J.P.G. Rebuilding soil hydrological functioning after swidden agriculture in eastern Madagascar. Agric. Ecosyst. Environ. 2017, 239, 101–111. [Google Scholar] [CrossRef]
- Ilstedt, U.; Malmer, A.; Verbeeten, E.; Murdiyarso, D. The effect of afforestation on water infiltration in the tropics: A systematic review and meta-analysis. For. Ecol. Manag. 2007, 251, 45–51. [Google Scholar] [CrossRef]
- Filoso, S.; Bezerra, M.O.; Weiss, K.C.; Palmer, M.A. Impacts of forest restoration on water yield: A systematic review. PLoS ONE 2017, 12, e0183210. [Google Scholar] [CrossRef] [PubMed]
- Godsey, S.; Elsenbeer, H. The soil hydrologic response to forest regrowth: A case study from southwestern Amazonia. Hydrol. Process. 2002, 16, 1519–1522. [Google Scholar] [CrossRef]
- Martı́nez, L.; Zinck, J. Temporal variation of soil compaction and deterioration of soil quality in pasture areas of Colombian Amazonia. Soil Tillage Res. 2004, 75, 3–18. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Giambelluca, T.W.; Tran, L.T.; Vana, T.T.; Nullet, M.A.; Fox, J.; Vien, T.D.; Pinthong, J.; Maxwell, J.; Evett, S. Hydrological consequences of landscape fragmentation in mountainous northern Vietnam: Evidence of accelerated overland flow generation. J. Hydrol. 2004, 287, 124–146. [Google Scholar] [CrossRef]
- Zimmermann, B.; Papritz, A.; Elsenbeer, H. Asymmetric response to disturbance and recovery: Changes of soil permeability under forest–pasture–forest transitions. Geoderma 2010, 159, 209–215. [Google Scholar] [CrossRef]
- Nyberg, G.; Bargués Tobella, A.; Kinyangi, J.; Ilstedt, U. Soil property changes over a 120-yr chronosequence from forest to agriculture in western Kenya. Hydrol. Earth Syst. Sci. 2012, 16, 2085–2094. [Google Scholar] [CrossRef]
- Leite, P.A.M.; de Souza, E.S.; dos Santos, E.S.; Gomes, R.J.; Cantalice, J.R.; Wilcox, B.P. The influence of forest regrowth on soil hydraulic properties and erosion in a semiarid region of Brazil. Ecohydrology 2017. [Google Scholar] [CrossRef]
- Paul, M.; Catterall, C.P.; Pollard, P.C.; Kanowski, J. Recovery of soil properties and functions in different rainforest restoration pathways. For. Ecol. Manag. 2010, 259, 2083–2092. [Google Scholar] [CrossRef]
- Mapa, R.B. Effect of reforestation using Tectona grandis on infiltration and soil water retention. For. Ecol. Manag. 1995, 77, 119–125. [Google Scholar] [CrossRef]
- Bonell, M.; Purandara, B.K.; Venkatesh, B.; Krishnaswamy, J.; Acharya, H.A.K.; Singh, U.V.; Jayakumar, R.; Chappell, N. The impact of forest use and reforestation on soil hydraulic conductivity in the Western Ghats of India: Implications for surface and sub-surface hydrology. J. Hydrol. 2010, 391, 47–62. [Google Scholar] [CrossRef]
- Ghimire, C.P.; Bruijnzeel, L.A.; Bonell, M.; Coles, N.; Lubczynski, M.W.; Gilmour, D.A. The effects of sustained forest use on hillslope soil hydraulic conductivity in the Middle Mountains of Central Nepal: Sustained forest use and soil hydraulic conductivity. Ecohydrology 2014, 7, 478–495. [Google Scholar] [CrossRef]
- Molin, P.G.; Gergel, S.E.; Soares-Filho, B.S.; Ferraz, S.F.B. Spatial determinants of Atlantic Forest loss and recovery in Brazil. Landsc. Ecol. 2017, 32, 857–870. [Google Scholar] [CrossRef]
- Mello, M.H.; Pedro Junior, M.J.; Ortolani, A.A.; Alfonsi, R.R. Chuva e Temperatura: Cem Anos de Observações em Campinas; Boletim Tecnico; IAC: Campinas, Brazil, 1994. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- De Oliveira, L.H.D.S.; Valladares, G.S.; Coelho, R.M.; Criscuolo, C. Soil vulnerability to degradation at Campinas municipality, SP. Geogr. Londrina 2014, 22, 65–79. [Google Scholar]
- Rodrigues, R.R.; Lima, R.A.F.; Gandolfi, S.; Nave, A.G. On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biol. Conserv. 2009, 142, 1242–1251. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; Gandolfi, S.; Nave, A.G.; Aronson, J.; Barreto, T.E.; Vidal, C.Y.; Brancalion, P.H.S. Large-scale ecological restoration of high-diversity tropical forests in SE Brazil. For. Ecol. Manag. 2011, 261, 1605–1613. [Google Scholar] [CrossRef]
- Preiskorn, G.M.; Pimenta, D.; Amazonas, N.T.; Nave, A.G.; Gandolfi, S.; Rodrigues, R.R.; Belloto, A.; Cunha, M.C.S. Metodologia de restauração para fins de aproveitamento econômico (reservas legais e áreas agrícolas). In Pacto Pela Restauração da Mata Atlântica—Referencial dos Conceitos e Ações de Restauração Florestal; Rodrigues, R.R., Brancalion, P.H.S., Eds.; LERF/ESALQ: Instituto BioAtlântica: São Paulo, Brazil, 2009; pp. 158–175. ISBN 978-85-60840-02-1. [Google Scholar]
- Santos, K.D.; Kinoshita, L.S.; Rezende, A.A. Species composition of climbers in seasonal semideciduous forest fragments of Southeastern Brazil. Biota Neotropica 2009, 9, 175–188. [Google Scholar] [CrossRef]
- Gee, G.; Or, D. Particle-size analysis. In Methods of Soil Analysis: Physical Methods; Dane, J.H., Topp, C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 255–293. ISBN 978-0-89118-841-4. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37. [Google Scholar] [CrossRef]
- Dane, J.H.; Hopmans, J.W. Pressure plate extractor. In Methods of Soil Analysis: Physical Methods; Dane, J., Topp, C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 688–690. ISBN 978-0-89118-841-4. [Google Scholar]
- Haverkamp, R.; Ross, P.J.; Smettem, K.R.J.; Parlange, J.Y. Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resour. Res. 1994, 30, 2931–2935. [Google Scholar] [CrossRef]
- Alagna, V.; Bagarello, V.; Di Prima, S.; Giordano, G.; Iovino, M. A simple field method to measure the hydrodynamic properties of soil surface crust. J. Agric. Eng. 2013, 44, 74–79. [Google Scholar] [CrossRef]
- Alagna, V.; Bagarello, V.; Di Prima, S.; Iovino, M. Determining hydraulic properties of a loam soil by alternative infiltrometer techniques: Hydraulic Properties of a Loam Soil by Infiltrometer Techniques. Hydrol. Process. 2016, 30, 263–275. [Google Scholar] [CrossRef]
- Castellini, M.; Di Prima, S.; Iovino, M. An assessment of the BEST procedure to estimate the soil water retention curve: A comparison with the evaporation method. Geoderma 2018, 320, 82–94. [Google Scholar] [CrossRef]
- Danielson, R.E.; Sutherland, P.L. Porosity. In Methods of Soil Analysis. Part I. Physical and Mineralogical Methods. Agronomy Monograph No. 9; Klute, A., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1986; pp. 443–461. [Google Scholar]
- Bagarello, V.; Di Prima, S.; Iovino, M. Comparing Alternative Algorithms to Analyze the Beerkan Infiltration Experiment. Soil Sci. Soc. Am. J. 2014, 78, 724–726. [Google Scholar] [CrossRef]
- Lassabatere, L.; Angulo-Jaramillo, R.; Soria Ugalde, J.M.; Cuenca, R.; Braud, I.; Haverkamp, R. Beerkan estimation of soil transfer parameters through infiltration experiments—BEST. Soil Sci. Soc. Am. J. 2006, 70, 521–532. [Google Scholar] [CrossRef]
- Yilmaz, D.; Lassabatere, L.; Angulo-Jaramillo, R.; Deneele, D.; Legret, M. Hydrodynamic Characterization of Basic Oxygen Furnace Slag through an Adapted BEST Method. Vadose Zone J. 2010, 9, 107–116. [Google Scholar] [CrossRef]
- Di Prima, S.; Lassabatere, L.; Bagarello, V.; Iovino, M.; Angulo-Jaramillo, R. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma 2016, 262, 20–34. [Google Scholar] [CrossRef]
- Brooks, R.; Corey, T. Hydraulic Properties of Porous Media; Colorado State University: Fort Collins, CO, USA, 1964; Volume 24. [Google Scholar]
- Haverkamp, R.; Debionne, S.; Angulo-Jaramillo, R.; Condappa, D. Soil Properties and Moisture Movement in the Unsaturated Zone. In Groundwater Engineering; Cushman, J.H., Tartakovsky, D.M., Eds.; CRS Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Cullotta, S.; Bagarello, V.; Baiamonte, G.; Gugliuzza, G.; Iovino, M.; La Mela Veca, D.S.; Maetzke, F.; Palmeri, V.; Sferlazza, S. Comparing Different Methods to Determine Soil Physical Quality in a Mediterranean Forest and Pasture Land. Soil Sci. Soc. Am. J. 2016, 80, 1038–1056. [Google Scholar] [CrossRef]
- Bagarello, V.; Di Prima, S.; Iovino, M. Estimating saturated soil hydraulic conductivity by the near steady-state phase of a Beerkan infiltration test. Geoderma 2017, 303, 70–77. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Elrick, D.E. Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Sci. Soc. Am. J. 1990, 54, 1233–1241. [Google Scholar] [CrossRef]
- Elrick, D.E.; Reynolds, W.D. Methods for analyzing constant-head well permeameter data. Soil Sci. Soc. Am. J. 1992, 56, 320–323. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Elrick, D.E. Pressure infiltrometer. In Methods of Soil Analysis, Part 4; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 826–836. [Google Scholar]
- Bagarello, V.; Di Prima, S.; Iovino, M.; Provenzano, G. Estimating field-saturated soil hydraulic conductivity by a simplified Beerkan infiltration experiment: Simplified determination of soil hydraulic conductivity. Hydrol. Process. 2014, 28, 1095–1103. [Google Scholar] [CrossRef]
- Castellini, M.; Iovino, M.; Pirastru, M.; Niedda, M.; Bagarello, V. Use of BEST Procedure to Assess Soil Physical Quality in the Baratz Lake Catchment (Sardinia, Italy). Soil Sci. Soc. Am. J. 2016, 80, 742–755. [Google Scholar] [CrossRef]
- Lilliefors, H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 1967, 62, 399–402. [Google Scholar] [CrossRef]
- Warrick, A.W. Spatial variability. In Environmental Soil Physics; Hillel, D., Ed.; Academic Press: San Diego, CA, USA, 1998; pp. 655–675. [Google Scholar]
- Lee, D.M.; Elrick, D.E.; Reynolds, W.D.; Clothier, B.E. A comparison of three field methods for measuring saturated hydraulic conductivity. Can. J. Soil Sci. 1985, 65, 563–573. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Yang, X.M.; Tan, C.S. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma 2008, 146, 466–474. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Viena, Austria, 2014. [Google Scholar]
- Lichner, L.; Hallett, P.D.; Drongová, Z.; Czachor, H.; Kovacik, L.; Mataix-Solera, J.; Homolák, M. Algae influence the hydrophysical parameters of a sandy soil. Catena 2013, 108, 58–68. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R.P.D. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Sci. Rev. 2000, 51, 33–65. [Google Scholar] [CrossRef]
- Müller, K.; Deurer, M. Review of the remediation strategies for soil water repellency. Agric. Ecosyst. Environ. 2011, 144, 208–221. [Google Scholar] [CrossRef]
- Logsdon, S.D. Transient variation in the infiltration rate during measurement with tension infiltrometers. Soil Sci. 1997, 162, 233–241. [Google Scholar] [CrossRef]
- Kacimov, A.R.; Al-Ismaily, S.; Al-Maktoumi, A. Green-Ampt one-dimensional infiltration from a ponded surface into a heterogeneous soil. J. Irrig. Drain. Eng. 2009, 136, 68–72. [Google Scholar] [CrossRef]
- Cooper, M.; Medeiros, J.C.; Rosa, J.D.; Soria, J.E.; Toma, R.S. Soil functioning in a toposequence under rainforest in São Paulo, Brazil. Rev. Bras. Cienc. Solo 2013, 37, 392–399. [Google Scholar] [CrossRef]
- Zenero, M.D.O.; Silva, L.F.S.D.; Castilho, S.C.D.P.; Vidal, A.; Grimaldi, M.; Cooper, M. Characterization and Classification of Soils under Forest and Pasture in an Agroextractivist Project in Eastern Amazonia. Rev. Bras. Cienc. Solo 2016, 40. [Google Scholar] [CrossRef]
- Nogueira, L.R.; Silva, C.F.D.; Pereira, M.G.; Gaia-Gomes, J.H.; Silva, E.M.R.D. Biological Properties and Organic Matter Dynamics of Soil in Pasture and Natural Regeneration Areas in the Atlantic Forest Biome. Rev. Bras. Cienc. Solo 2016, 40. [Google Scholar] [CrossRef]
- Cooper, M.; Rosa, J.D.; Medeiros, J.C.; Oliveira, T.C.D.; Toma, R.S.; Juhász, C.E.P. Hydro-physical characterization of soils under tropical semi-deciduous forest. Sci. Agric. 2012, 69, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Löf, M.; Dey, D.C.; Navarro, R.M.; Jacobs, D.F. Mechanical site preparation for forest restoration. New For. 2012, 43, 825–848. [Google Scholar] [CrossRef]
- Ferraz, S.F.B.; Lima, W.D.P.; Rodrigues, C.B. Managing forest plantation landscapes for water conservation. For. Ecol. Manag. 2013, 301, 58–66. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Jactel, H.; Parrotta, J.A.; Ferraz, S.F.B. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For. Ecol. Manag. 2013, 301, 43–50. [Google Scholar] [CrossRef]
- Gageler, R.; Bonner, M.; Kirchhof, G.; Amos, M.; Robinson, N.; Schmidt, S.; Shoo, L.P. Early Response of Soil Properties and Function to Riparian Rainforest Restoration. PLoS ONE 2014, 9, e104198. [Google Scholar] [CrossRef] [PubMed]
- Holl, K.D. Factors Limiting Tropical Rain Forest Regeneration in Abandoned Pasture: Seed Rain, Seed Germination, Microclimate, and Soil. Biotropica 1999, 31, 229–242. [Google Scholar] [CrossRef]
- Zahawi, R.A.; Augspurger, C.K. Tropical forest restoration: Tree islands as recruitment foci in degraded lands of Honduras. Ecol. Appl. 2006, 16, 464–478. [Google Scholar] [CrossRef]
- Bassett, I.E.; Simcock, R.C.; Mitchell, N.D. Consequences of soil compaction for seedling establishment: Implications for natural regeneration and restoration. Austral Ecol. 2005, 30, 827–833. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Latawiec, A.E.; Strassburg, B.B.; Brancalion, P.H.; Rodrigues, R.R.; Gardner, T. Creating space for large-scale restoration in tropical agricultural landscapes. Front. Ecol. Environ. 2015, 13, 211–218. [Google Scholar] [CrossRef]
Variable | Statistic | Plots | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pasture 1 | Pasture 2 | Restored Forest 3 | Restored Forest 4 | Remnant Forest 5 | Remnant Forest 6 | ||||||||||||||
U | M | D | U | M | D | U | M | D | U | M | D | U | M | D | U | M | D | ||
Clay | Mean | 19.6a | 10.2b | 9.5b | 25.0b | 31.7a | 21.6b | 11.2b | 12.1b | 19.0a | 26.1a | 21.0b | 21.9b | 18.3b | 23.3a | 19.0b | 30.2a | 31.0a | 24.4b |
CV | 7.9 | 2.8 | 12.9 | 5.6 | 3.9 | 13.1 | 17.3 | 11.7 | 4.3 | 5.1 | 3.9 | 2.9 | 14.4 | 2.0 | 5.7 | 3.6 | 4.4 | 2.0 | |
Silt | Mean | 27.4a | 20.2b | 22.3b | 30.7a | 32.5a | 29.9a | 20.7b | 21.2b | 27.7a | 22.7a | 19.4b | 19.9b | 25.4a | 26.3a | 26.7a | 34.3b | 33.9b | 39.7a |
CV | 6.6 | 6.8 | 6.5 | 7.1 | 6.4 | 11.6 | 14.6 | 12.8 | 6.8 | 2.1 | 2.5 | 6.5 | 10.2 | 8.5 | 8.6 | 5.8 | 2.5 | 1.2 | |
Sand | Mean | 53.0a | 69.6a | 68.3a | 44.4a | 35.8a | 48.5a | 68.1b | 66.8b | 53.3a | 51.2a | 59.7b | 58.3b | 56.3b | 50.4a | 54.3b | 35.6a | 35.2a | 35.9b |
CV | 4.1 | 1.7 | 3.8 | 3.5 | 2.5 | 13.0 | 6.8 | 4.6 | 4.9 | 3.3 | 2.1 | 2.0 | 8.0 | 5.1 | 6.2 | 8.3 | 1.7 | 2.3 | |
OC | Mean | 30.0a | 20.1b | 17.8b | 32.1a | 32.1a | 25.6b | 14.5a | 17.3a | 21.3a | 22.0a | 19.0a | 17.4a | 30.9a | 34.8a | 33.8a | 31.1a | 34.2a | 27.8a |
CV | 5.9 | 2.4 | 18.6 | 11.7 | 4.9 | 12.7 | 22.6 | 33.7 | 9.8 | 12.2 | 14.8 | 17.0 | 41.4 | 18.5 | 12.6 | 12.3 | 11.0 | 25.4 | |
ρb | Mean | 1.27a | 1.24a | 1.22a | 1.29a | 1.18b | 1.33a | 1.23a | 1.29a | 1.22a | 1.33a | 1.34a | 1.42a | 1.05b | 1.03b | 1.15a | 1.02a | 1.05a | 0.99a |
CV | 5.7 | 5.1 | 3.8 | 5.8 | 4.9 | 5.0 | 7.1 | 3.3 | 5.9 | 3.4 | 6.0 | 5.3 | 5.4 | 7.1 | 7.1 | 9.7 | 7.6 | 8.3 | |
Pt | Mean | 0.53a | 0.53a | 0.54a | 0.51a | 0.55a | 0.50a | 0.54a | 0.51a | 0.54a | 0.50a | 0.50a | 0.47a | 0.60b | 0.61b | 0.57b | 0.61b | 0.60b | 0.63b |
CV | 4.8 | 4.6 | 3.5 | 6.1 | 4.5 | 4.7 | 6.0 | 3.3 | 5.4 | 4.1 | 6.4 | 6.0 | 3.1 | 4.4 | 5.0 | 6.4 | 5.3 | 4.6 | |
Mac | Mean | 0.12b | 0.18a | 0.21a | 0.11a | 0.07b | 0.06b | 0.20a | 0.19a | 0.16b | 0.18a | 0.14b | 0.16a | 0.24a | 0.26a | 0.15b | 0.19b | 0.22a | 0.18b |
CV | 5.0 | 12.0 | 15.5 | 25.2 | 15.4 | 40.8 | 10.2 | 4.3 | 28.1 | 12.0 | 37.0 | 28.6 | 15.9 | 3.1 | 18.1 | 13.3 | 13.9 | 25.5 | |
Mic | Mean | 0.36a | 0.32b | 0.32b | 0.50a | 0.51a | 0.50a | 0.28b | 0.29b | 0.34a | 0.35a | 0.33a | 0.31b | 0.31b | 0.29b | 0.37a | 0.37a | 0.35a | 0.37a |
CV | 16.8 | 5.7 | 16.5 | 3.7 | 1.1 | 4.8 | 12.1 | 8.4 | 12.3 | 7.7 | 11.4 | 5.9 | 3.1 | 5.1 | 7.8 | 6.5 | 2.3 | 8.0 | |
θi | Mean | 0.32a | 0.19b | 0.16b | 0.25b | 0.37a | 0.25b | 0.19a | 0.19a | 0.19a | 0.37ab | 0.34a | 0.23b | 0.15a | 0.17b | 0.32a | 0.21a | 0.23a | 0.17b |
CV | 12.8 | 29.3 | 28.4 | 23.2 | 5.2 | 23.6 | 14.9 | 17.0 | 11.2 | 15.9 | 14.0 | 14.1 | 12.8 | 9.0 | 26.9 | 9.9 | 4.5 | 14.7 |
Variable | Grouping Information (Plots) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KsS | F6M | F6U | F5M | F6D | F5U | R3D | R3M | R3U | P1D | F5D | R4D | R4U | R4M | P1U | P1M | P2U | P2M | P2D |
a | a | a | a | a | a | a | a | |||||||||||
b | b | b | b | b | ||||||||||||||
c | c | c | c | c | c | |||||||||||||
d | d | d | d | d | d | |||||||||||||
e | e | e | e | e | e | |||||||||||||
f | f | f | f | f | f | f | f | |||||||||||
g | g | g | g | g | g | g |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano-Baez, S.E.; Cooper, M.; Ferraz, S.F.B.; Ribeiro Rodrigues, R.; Pirastru, M.; Di Prima, S. Previous Land Use Affects the Recovery of Soil Hydraulic Properties after Forest Restoration. Water 2018, 10, 453. https://doi.org/10.3390/w10040453
Lozano-Baez SE, Cooper M, Ferraz SFB, Ribeiro Rodrigues R, Pirastru M, Di Prima S. Previous Land Use Affects the Recovery of Soil Hydraulic Properties after Forest Restoration. Water. 2018; 10(4):453. https://doi.org/10.3390/w10040453
Chicago/Turabian StyleLozano-Baez, Sergio E., Miguel Cooper, Silvio F. B. Ferraz, Ricardo Ribeiro Rodrigues, Mario Pirastru, and Simone Di Prima. 2018. "Previous Land Use Affects the Recovery of Soil Hydraulic Properties after Forest Restoration" Water 10, no. 4: 453. https://doi.org/10.3390/w10040453
APA StyleLozano-Baez, S. E., Cooper, M., Ferraz, S. F. B., Ribeiro Rodrigues, R., Pirastru, M., & Di Prima, S. (2018). Previous Land Use Affects the Recovery of Soil Hydraulic Properties after Forest Restoration. Water, 10(4), 453. https://doi.org/10.3390/w10040453