Adsorption of Isothiazolone Biocides in Textile Reverse Osmosis Concentrate by Powdered Activated Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Adsorption Experiments
2.3. Analysis of Isothiazolone Concentrations
2.4. Point of Zero Charge Determination
2.5. Adsorption Kinetics Models
2.6. Adsorption Isotherm Models
3. Results and Discussion
3.1. Adsorption Rate and the Elimination of Isothiazolone by PAC
3.2. Equilibrium Adsorption
3.2.1. Adsorption Isotherms
3.2.2. pH Effect
3.2.3. Effect of Textile Reverse Osmosis Concentrate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Nagorka, R.; Gleue, C.; Scheller, C.; Moriske, H.J.; Straff, W. Isothiazolone emissions from building products. Indoor Air 2015, 25, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Bollmann, U.E.; Tang, C.; Eriksson, E.; Jonsson, K.; Vollertsen, J.; Bester, K. Biocides in urban wastewater treatment plant influent at dry and wet weather: Concentrations, mass flows and possible sources. Water Res. 2014, 60, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Schoknecht, U.; Gruycheva, J.; Mathies, H.; Bergmann, H.; Burkhardt, M. Leaching of Biocides Used in Facade Coatings under laboratory Test Conditions. Environ. Sci. Technol. 2009, 43, 9321–9328. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chen, Z.; Wu, G.X.; Wu, Q.Y.; Zhang, F.; Niu, Z.B.; Hu, H.Y. Characteristics of water quality of municipal wastewater treatment plants in China: Implications for resources utilization and management. J. Clean. Prod. 2016, 131, 1–9. [Google Scholar] [CrossRef]
- Majamaa, K.; Johnson, J.E.; Bertheas, U. Three steps to control biofouling in reverse osmosis systems. Desalin. Water Treat. 2012, 42, 107–116. [Google Scholar] [CrossRef]
- Tang, F.; Hu, H.Y.; Wu, Q.Y.; Tang, X.; Sun, Y.X.; Shi, X.L.; Huang, J.J. Effects of chemical agent injections on genotoxicity of wastewater in a microfiltration-reverse osmosis membrane process for wastewater reuse. J. Hazard. Mater. 2013, 260, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.O.; Oliver, A.J.; Charlton, M.H. Theoretical studies on the biocidal activity of 5-chloro-3-isothiazolone. Theochem. J. Mol. Struct. 1998, 429, 103–110. [Google Scholar] [CrossRef]
- Li, A.; Chen, Z.; Wu, Q.Y.; Huang, M.H.; Liu, Z.Y.; Chen, P.; Mei, L.C.; Hu, H.Y. Study on the removal of benzisothiazolinone biocide and its toxicity: The effectiveness of ozonation. Chem. Eng. J. 2016, 300, 376–383. [Google Scholar] [CrossRef]
- Bravo, Y.; Teriete, P.; Dhanya, R.P.; Dahl, R.; Lee, P.S.; Kiffer-Moreira, T.; Ganji, S.R.; Sergienko, E.; Smith, L.H.; Farquharson, C.; et al. Design, synthesis and evaluation of benzoisothiazolones as selective inhibitors of PHOSPHO1. Bioorg. Med. Chem. Lett. 2014, 24, 4308–4311. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Wu, Q.Y.; Tian, G.P.; Hu, H.Y. Effective degradation of methylisothiazolone biocide using ozone: Kinetics, mechanisms, and decreases in toxicity. J. Environ. Manag. 2016, 183, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Laopaiboon, L.; Smith, R.N.; Hall, S.J. A study of the effect of isothiazolones on the performance and characteristics of a laboratory-scale rotating biological contactor. J. Appl. Microbiol. 2001, 91, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Meinel, F.; Zietzschmann, F.; Ruhl, A.S.; Sperlich, A.; Jekel, M. The benefits of powdered activated carbon recirculation for micropollutant removal in advanced wastewater treatment. Water Res. 2016, 91, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.Z.; Gu, P.; Zhang, G.H. Reverse osmosis concentrate treatment by a PAC countercurrent four-stage adsorption/MF hybrid process. Desalination 2014, 352, 18–26. [Google Scholar] [CrossRef]
- Wang, W.L.; Wu, Q.Y.; Wang, Z.M.; Niu, L.X.; Wang, C.; Sun, M.C.; Hu, H.Y. Adsorption removal of antiviral drug oseltamivir and its metabolite oseltamivir carboxylate by carbon nanotubes: Effects of carbon nanotube properties and media. J. Environ. Manag. 2015, 162, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Kumar, R.; Nayak, A.; Saleh, T.A.; Barakat, M.A. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Adv. Colloid Interface Sci. 2013, 193, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Patterer, M.S.; Bavasso, I.; Sambeth, J.E.; Medici, F. Cadmium removal from acqueous solution by adsorption on spent coffee grounds. Chem. Eng. Trans. 2017, 60, 157–162. [Google Scholar]
- Azouaou, N.; Sadaoui, Z.; Djaafri, A.; Mokaddem, H. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 2010, 184, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Azizian, S.; Niknam, Z.; Rombi, E. Adsorption of pentafluorophenol onto powdered, granular, and cloth activated carbons. J. Dispers. Sci. Technol. 2012, 33, 206–212. [Google Scholar] [CrossRef]
- Chen, W.; Duan, L.; Zhu, D.Q. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ. Sci. Technol. 2007, 41, 8295–8300. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Castilla, C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 2004, 42, 83–94. [Google Scholar] [CrossRef]
- Mardones, L.E.; Soledad Legnoverde, M.; Simonetti, S.; Basaldella, E.I. Theoretical and experimental study of isothiazolinone adsorption onto ordered mesoporous silica. Appl. Surf. Sci. 2016, 389, 790–796. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Upadhyay, S.N. Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir. Energy Fuels 2009, 23, 2983–2988. [Google Scholar] [CrossRef]
- Aksu, Z. Application of biosorption for the removal of organic pollutants: A review. Process Biochem. 2005, 40, 997–1026. [Google Scholar] [CrossRef]
- Ho, Y.S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Krivova, M.G.; Grinshpan, D.D.; Hedin, N. Adsorption of CnTABr surfactants on activated carbons. Colloid Surf. A 2013, 436, 62–70. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Zahoor, M.; Mahramanlioglu, M. Adsorption of Imidacloprid on Powdered Activated Carbon and Magnetic Activated Carbon. Chem. Biochem. Eng. Q. 2011, 25, 55–63. [Google Scholar]
- Uyak, V.; Yavuz, S.; Toroz, I.; Ozaydin, S.; Genceli, E.A. Disinfection by-products precursors removal by enhanced coagulation and PAC adsorption. Desalination 2007, 216, 334–344. [Google Scholar] [CrossRef]
- Malik, P.K. Dye removal from wastewater using activated carbon developed from sawdust: Adsorption equilibrium and kinetics. J. Hazard. Mater. 2004, 113, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Hameed, B.H.; Din, A.T.M.; Ahmad, A.L. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. J. Hazard. Mater. 2007, 141, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.C.; Tseng, R.L.; Juang, R.S. Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J. Colloid Interface Sci. 2005, 283, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Cheng, B.L.; Cheng, Y.L. Adsorption of microcystin-LR by three types of activated carbon. J. Hazard. Mater. 2007, 141, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Machado, F.M.; Bergmann, C.P.; Fernandes, T.H.M.; Lima, E.C.; Royer, B.; Calvete, T.; Fagan, S.B. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J. Hazard. Mater. 2011, 192, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wu, W.H.; Jing, Q.F.; Jiang, W.; Xing, B. S Competitive Adsorption of Naphthalene with 2,4-Dichlorophenol and 4-Chloroaniline on Multiwalled Carbon Nanotubes. Environ. Sci. Technol. 2010, 44, 3021–3027. [Google Scholar] [CrossRef] [PubMed]
- Lerman, I.; Chen, Y.N.; Xing, B.S.; Chefetz, B. Adsorption of carbamazepine by carbon nanotubes: Effects of DOM introduction and competition with phenanthrene and bisphenol A. Environ. Pollut. 2013, 182, 169–176. [Google Scholar] [CrossRef] [PubMed]
Kinetic Model | Parameter | MIT | CMIT | BIT | OIT |
---|---|---|---|---|---|
pseudo first order model | K1(1·min−1) | 2.58 | 0.996 | 0.829 | 0.565 |
qe (mg·g−1) | 46.8 | 76.9 | 201 | 228 | |
R2 | 0.795 | 0.945 | 0.911 | 0.930 | |
pseudo second order model | K2 (mg·g−1·min−1) | 0.129 | 0.020 | 0.006 | 0.0033 |
qe (mg·g−1) | 48.0 | 80.5 | 212 | 244 | |
R2 | 0.749 | 0.971 | 0.992 | 0.990 |
Equilibrium Model | Parameters | MIT | CMIT | BIT | OIT |
---|---|---|---|---|---|
Langmuir isotherm | KL(L·g−1) | 0.04 | 1.24 | 0.93 | 1.83 |
qm(mg·g−1) | 86.3 | 98.6 | 258 | 336 | |
R2 | 0.989 | 0.994 | 0.999 | 0.997 | |
Freundlich isotherm | KF | 13.7 | 54.4 | 129 | 237 |
n | 2.65 | 4.62 | 4.63 | 9.52 | |
R2 | 0.973 | 0.924 | 0.997 | 0.946 | |
logKow | −0.83 | −0.34 | 0.64 | 2.45 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.-T.; Chen, Z.; Wang, W.-L.; Sun, Y.-X.; Zhou, T.-H.; Li, A.; Wu, Q.-Y.; Hu, H.-Y. Adsorption of Isothiazolone Biocides in Textile Reverse Osmosis Concentrate by Powdered Activated Carbon. Water 2018, 10, 532. https://doi.org/10.3390/w10040532
Li B-T, Chen Z, Wang W-L, Sun Y-X, Zhou T-H, Li A, Wu Q-Y, Hu H-Y. Adsorption of Isothiazolone Biocides in Textile Reverse Osmosis Concentrate by Powdered Activated Carbon. Water. 2018; 10(4):532. https://doi.org/10.3390/w10040532
Chicago/Turabian StyleLi, Bing-Tian, Zhuo Chen, Wen-Long Wang, Ying-Xue Sun, Tian-Hui Zhou, Ang Li, Qian-Yuan Wu, and Hong-Ying Hu. 2018. "Adsorption of Isothiazolone Biocides in Textile Reverse Osmosis Concentrate by Powdered Activated Carbon" Water 10, no. 4: 532. https://doi.org/10.3390/w10040532
APA StyleLi, B. -T., Chen, Z., Wang, W. -L., Sun, Y. -X., Zhou, T. -H., Li, A., Wu, Q. -Y., & Hu, H. -Y. (2018). Adsorption of Isothiazolone Biocides in Textile Reverse Osmosis Concentrate by Powdered Activated Carbon. Water, 10(4), 532. https://doi.org/10.3390/w10040532