Assessment of Rainfall Variability and Its Relationship to ENSO in a Sub-Andean Watershed in Central Bolivia
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data Collection
2.3. El Niño Southern Oscillation and Southern Oscillation Index
2.4. Climate Variability and Trends
3. Results and Discussion
3.1. Climate Variability
3.2. Groundwater Response to Rainfall Variability
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Russo, T.A.; Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 2017, 10, 105–108. [Google Scholar] [CrossRef]
- Molina-Navarro, E.; Hallack-Alegría, M.; Martínez-Pérez, S.; Ramírez-Hernández, J.; Mungaray-Moctezuma, A.; Sastre-Merlín, A. Hydrological modeling and climate change impacts in an agricultural semiarid region. Case study: Guadalupe river basin, Mexico. Agric. Water Manag. 2016, 175, 29–42. [Google Scholar] [CrossRef]
- Abu-Allaban, M.; El-Naqa, A.; Jaber, M.; Hammouri, N. Water scarcity impact of climate change in semi-arid regions: A case study in Mujib Basin, Jordan. Arab. J. Geosci. 2015, 8, 951–959. [Google Scholar] [CrossRef]
- Marengo, J.A.; Jones, R.; Alves, L.M.; Valverde, M.C. Future change of temperature and precipitation extremes in South America as derived from the precis regional climate modeling system. Int. J. Climatol. 2009, 29, 2241–2255. [Google Scholar] [CrossRef]
- Haylock, M.R.; Peterson, T.; Alves, L.; Ambrizzi, T.; Anunciação, Y.; Baez, J.; Barros, V.; Berlato, M.; Bidegain, M.; Coronel, G. Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J. Clim. 2006, 19, 1490–1512. [Google Scholar] [CrossRef]
- Nobre, P.; Shukla, J. Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Clim. 1996, 9, 2464–2479. [Google Scholar] [CrossRef]
- Grimm, A.M.; Tedeschi, R.G. Enso and extreme rainfall events in South America. J. Clim. 2009, 22, 1589–1609. [Google Scholar] [CrossRef]
- Andrade, M.F. La Economía del Cambio Climático en Bolivia: Validación de Modelos Climáticos; Inter-American Development Bank: Washington, DC, USA, 2014. [Google Scholar]
- Wolter, K.; Timlin, M.S. El niño/southern oscillation behaviour since 1871 as diagnosed in an extended multivariate enso index (mei. Ext). Int. J. Climatol. 2011, 31, 1074–1087. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Hoar, T.J. The 1990–1995 el niño-southern oscillation event: Longest on record. Geophys. Res. Lett. 1996, 23, 57–60. [Google Scholar] [CrossRef]
- Coelho, C.; Uvo, C.; Ambrizzi, T. Exploring the impacts of the tropical pacific sst on the precipitation patterns over South America during enso periods. Theor. Appl. Climatol. 2002, 71, 185–197. [Google Scholar] [CrossRef]
- Barros, V.R.; Doyle, M.E.; Camilloni, I.A. Precipitation trends in southeastern South America: Relationship with enso phases and with low-level circulation. Theor. Appl. Climatol. 2008, 93, 19–33. [Google Scholar] [CrossRef]
- Caviedes, C.; Waylen, P.R. Respuestas del clima de américa del sur a las fases de enso. Bull. L'Inst. Fr. D'études Andines 1998, 27, 613–626. [Google Scholar]
- Grimm, A.M. Interannual climate variability in South America: Impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stoch. Environ. Res. Risk Assess. 2011, 25, 537–554. [Google Scholar] [CrossRef]
- Aceituno, P. On the functioning of the southern oscillation in the South American sector. Part I: Surface climate. Mon. Weather Rev. 1988, 116, 505–524. [Google Scholar] [CrossRef]
- Ramírez, E.; Francou, B.; Ribstein, P.; Descloitres, M.; Guérin, R.; Mendoza, J.; Gallaire, R.; Pouyaud, B.; Jordan, E. Small glaciers disappearing in the tropical andes: A case-study in bolivia: Glaciar chacaltaya. J. Glaciol. 2001, 47, 187–194. [Google Scholar] [CrossRef]
- Bradley, R.S.; Vuille, M.; Diaz, H.F.; Vergara, W. Threats to water supplies in the tropical andes. Science 2006, 312, 1755–1756. [Google Scholar] [CrossRef] [PubMed]
- Escurra, J.J.; Vazquez, V.; Cestti, R.; De Nys, E.; Srinivasan, R. Climate change impact on countrywide water balance in bolivia. Reg. Environ. Chang. 2014, 14, 727–742. [Google Scholar] [CrossRef]
- Vuille, M.; Francou, B.; Wagnon, P.; Juen, I.; Kaser, G.; Mark, B.G.; Bradley, R.S. Climate change and tropical Andean Glaciers: Past, present and future. Earth-Sci. Rev. 2008, 89, 79–96. [Google Scholar] [CrossRef]
- Urrutia, R.; Vuille, M. Climate change projections for the tropical andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Vuille, M.; Bradley, R.S.; Werner, M.; Keimig, F. 20th century climate change in the tropical andes: Observations and model results. In Climate Variability and Change in High Elevation Regions: Past, Present & Future; Springer: Berlin, Germany, 2003; pp. 75–99. [Google Scholar]
- Satgé, F.; Espinoza, R.; Zolá, R.P.; Roig, H.; Timouk, F.; Molina, J.; Garnier, J.; Calmant, S.; Seyler, F.; Bonnet, M.-P. Role of climate variability and human activity on poopó lake droughts between 1990 and 2015 assessed using remote sensing data. Remote Sens. 2017, 9, 218. [Google Scholar] [CrossRef]
- Allen, J. Bolivia’s Lake Poopó Disappears. Available online: https://earthobservatory.nasa.gov/NaturalHazards/view.php?id=87363 (accessed on 16 March 2017).
- Wutich, A.; Ragsdale, K. Water insecurity and emotional distress: Coping with supply, access, and seasonal variability of water in a Bolivian squatter settlement. Soc. Sci. Med. 2008, 67, 2116–2125. [Google Scholar] [CrossRef] [PubMed]
- Saldías, C.; Boelens, R.; Wegerich, K.; Speelman, S. Losing the watershed focus: A look at complex community-managed irrigation systems in Bolivia. Water Int. 2012, 37, 744–759. [Google Scholar] [CrossRef]
- Saldías, C.; Speelman, S.; Van Huylenbroeck, G. Access to irrigation water and distribution of water rights in the abanico punata, Bolivia. Soc. Nat. Resour. 2013, 26, 1008–1021. [Google Scholar] [CrossRef]
- Gonzales Amaya, A.; Barmen, G. Recharge process and origin of saline water in the semi-arid punata alluvial fan in Bolivia. Hydrol. Process. 2018, in press. [Google Scholar]
- UNDP-GEOBOL. Proyecto Integrado de Recursos Hidricos Cochabamba (Integrated Water Resources Project Cochabamba); United Nations Development Programme: Cochabamba, Bolivia, 1978. [Google Scholar]
- Gonzales Amaya, A.; Dahlin, T.; Barmen, G.; Rosberg, J.-E. Electrical resistivity tomography and induced polarization for mapping the subsurface of alluvial fans: A case study in Punata (Bolivia). Geosciences 2016, 6, 51. [Google Scholar] [CrossRef]
- Cruz, R. Technical Report: Hidrological Study of the Tiraque Valley (Estudio Hidrologico del Valle de Tiraque-Informe Final); Universidad Mayor de San Simon: Cochabamba, Bolivia, 2008. [Google Scholar]
- Keppenne, C.L.; Ghil, M. Adaptive filtering and prediction of the southern oscillation index. J. Geophys. Res. Atmos. 1992, 97, 20449–20454. [Google Scholar] [CrossRef]
- An, S.-I.; Bong, H. Inter-decadal change in el niño-southern oscillation examined with bjerknes stability index analysis. Clim. Dyn. 2016, 47, 967–979. [Google Scholar] [CrossRef]
- Kosaka, Y.; Xie, S.-P. Recent global-warming hiatus tied to equatorial pacific surface cooling. Nature 2013, 501, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.T.; Tippett, M.K.; Sobel, A.H. Influence of the el niño/southern oscillation on tornado and hail frequency in the United States. Nat. Geosci. 2015, 8, 278–283. [Google Scholar] [CrossRef]
- Grimm, A.M.; Barros, V.R.; Doyle, M.E. Climate variability in southern South America associated with el niño and la niña events. J. Clim. 2000, 13, 35–58. [Google Scholar] [CrossRef]
- Biondi, F.; Gershunov, A.; Cayan, D.R. North pacific decadal climate variability since 1661. J. Clim. 2001, 14, 5–10. [Google Scholar] [CrossRef]
- Deser, C.; Phillips, A.S.; Hurrell, J.W. Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Clim. 2004, 17, 3109–3124. [Google Scholar] [CrossRef]
- Murphy, B.F.; Power, S.B.; McGree, S. The varied impacts of el niño–Southern Oscillation on Pacific island climates. J. Clim. 2014, 27, 4015–4036. [Google Scholar] [CrossRef]
- Miranda, G. La influencia del fenómeno el niño y del índice de oscilación del sur en las precipitaciones de Cochabamba, Bolivia. Bull. Inst. Fr. Études Andines 1998, 27, 709–720. [Google Scholar]
- NOAA. Southern Oscillation Index (Soi). Available online: https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/ (accessed on 22 March 2016).
- AGBM. Southern Oscillation Index (Soi) Since 1876. Available online: http://www.bom.gov.au/climate/current/soihtm1.shtml (accessed on 20 February 2016).
- Villazon, M.F. Looking for climate variability, trends and effects of El Niño event (2015–2016) in Bolivia. In XVI Congreso Bolivariano de Ingenieria Sanitaria, Medio Ambiente y Energias Renovables; ABIS: Santa Cruz, Bolivia, 2015. [Google Scholar]
- Holbrook, N.J.; Brown, J.; Davidson, J.; Feng, M.; Hobday, A.; Lough, J.; McGregor, S.; Power, S.; Riseby, J. El Niño–Southern Oscillation. In Marine Climate Change in Australia: Impacts and Adaptation Responses; CSIRO: Camberra, Austrailia, 2012. [Google Scholar]
- Quinn, W.H.; Neal, V.T.; Antunez de Mayolo, S.E. El niño occurrences over the past four and a half centuries. J. Geophys. Res. Oceans 1987, 92, 14449–14461. [Google Scholar] [CrossRef]
- Parker, D.; Folland, C.; Scaife, A.; Knight, J.; Colman, A.; Baines, P.; Dong, B. Decadal to multidecadal variability and the climate change background. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Meinke, H.; DeVoil, P.; Hammer, G.L.; Power, S.; Allan, R.; Stone, R.C.; Folland, C.; Potgieter, A. Rainfall variability at decadal and longer time scales: Signal or noise? J. Clim. 2005, 18, 89–96. [Google Scholar] [CrossRef]
- Casanueva, V.A.; Rodríguez Puebla, C.; Frías Domínguez, M.D.; González Reviriego, N. Variability of extreme precipitation over europe and its relationships with teleconnection patterns. Hydrol. Earth Syst. Sci. 2014, 18, 709–725. [Google Scholar] [CrossRef]
- Diaz, H.F.; Quayle, R.G. The climate of the united states since 1895: Spatial and temporal changes. Mon. Weather Rev. 1980, 108, 249–266. [Google Scholar] [CrossRef]
- Frankignoul, C.; Hasselmann, K. Stochastic climate models, part ii application to sea-surface temperature anomalies and thermocline variability. Tellus 1977, 29, 289–305. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified mann-kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Karl, T.R.; Knight, R.W.; Plummer, N. Trends in high-frequency climate variability in the twentieth century. Nature 1995, 377, 217–220. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the mann–kendall and spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Tabari, H.; AghaKouchak, A.; Willems, P. A perturbation approach for assessing trends in precipitation extremes across Iran. J. Hydrol. 2014, 519, 1420–1427. [Google Scholar] [CrossRef]
- Ntegeka, V.; Willems, P. Trends and multidecadal oscillations in rainfall extremes, based on a more than 100-year time series of 10 min rainfall intensities at Uccle, Belgium. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Onyutha, C.; Willems, P. Spatial and temporal variability of rainfall in the Nile basin. Hydrol. Earth Syst. Sci. 2015, 19, 2227–2246. [Google Scholar] [CrossRef]
- Willems, P. Adjustment of extreme rainfall statistics accounting for multidecadal climate oscillations. J. Hydrol. 2013, 490, 126–133. [Google Scholar] [CrossRef]
- Chiew, F.H. An overview of methods for estimating climate change impact on runoff. In Proceedings of the 30th Hydrology & Water Resources Symposium: Past, Present & Future, Launceston, Australia, 4–7 December 2006; p. 643. [Google Scholar]
- Willems, P.; Vrac, M. Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change. J. Hydrol. 2011, 402, 193–205. [Google Scholar] [CrossRef]
- Mpelasoka, F.S.; Chiew, F.H. Influence of rainfall scenario construction methods on runoff projections. J. Hydrometeorol. 2009, 10, 1168–1183. [Google Scholar] [CrossRef]
- Henley, B.J.; Thyer, M.A.; Kuczera, G.; Franks, S.W. Climate-informed stochastic hydrological modeling: Incorporating decadal-scale variability using paleo data. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Torrence, C.; Webster, P.J. Interdecadal changes in the enso–monsoon system. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef]
- Mora, D.; Willems, P. Decadal oscillations in rainfall and air temperature in the paute river basin—Southern Andes of Ecuador. Theor. Appl. Climatol. 2012, 108, 267–282. [Google Scholar] [CrossRef]
- Moges, S.A.; Taye, M.T.; Willems, P.; Gebremichael, M. Exceptional pattern of extreme rainfall variability at urban centre of Addis Ababa, Ethiopia. Urban Water J. 2014, 11, 596–604. [Google Scholar] [CrossRef]
- Taye, M.T.; Willems, P. Temporal variability of hydroclimatic extremes in the Blue Nile Basin. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Blanco, J.L.; Díaz, M. Características oceanográficas y desarrollo de el niño 1982-83 en la zona norte de chile. Investig. Pesq. (Chile) 1985, 32, 53–60. [Google Scholar]
- Glynn, P.W. El niño-southern oscillation 1982–1983: Nearshore population, community, and ecosystem responses. Annu. Rev. Ecol. Syst. 1988, 19, 309–346. [Google Scholar] [CrossRef]
- Ahzegbobor, P.A. Assessment of soil salinity using electrical resistivity imaging and induced polarization methods. Afr. J. Agric. Res. 2014, 9, 3369–3378. [Google Scholar]
- Chen, Y.; Takeuchi, K.; Xu, C.; Chen, Y.; Xu, Z. Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrol. Process. 2006, 20, 2207–2216. [Google Scholar] [CrossRef]
- Alvarado, J.R.; Camacho, A.A.; Diaz, J.Z. Estudy for the Control and Protection of Groundwater in Valle Alto (Cpas, bo 014901/01): Technical Report; SERGEOMIN-TNO: Delft, The Netherlands, 1998; p. 260. [Google Scholar]
Station | Period of Recording | Elevation (m a.s.l.) | Coordinates WGS84 | ||
---|---|---|---|---|---|
Latitude | Longitude | ||||
Tiraque | 1/1/1955 | 31/12/2016 | 3255 | 17°25′ | 65°43′ |
San Benito | 1/1/1966 | 31/12/2016 | 2703 | 17°31′ | 65°54′ |
Cochabamba | 1/11/1942 | 31/12/2016 | 2565 | 17°25′ | 66°10′ |
Corani | 1/7/1953 | 31/12/2016 | 3320 | 17°13′ | 65°52′ |
PM10 | 1/11/2011 | 31/10/2012 | 2751 | 17°31.6′ | 65°49.8′ |
PM23 | 1/11/2011 | 31/10/2012 | 2732 | 17°31.8′ | 65°50.9′ |
PM31 | 10/11/2015 | 31/8/2016 | 2743 | 17°30.8′ | 65°50.3′ |
PM32 | 10/11/2015 | 31/8/2016 | 2782 | 17°31.3′ | 65°48.6′ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzales Amaya, A.; Villazon, M.F.; Willems, P. Assessment of Rainfall Variability and Its Relationship to ENSO in a Sub-Andean Watershed in Central Bolivia. Water 2018, 10, 701. https://doi.org/10.3390/w10060701
Gonzales Amaya A, Villazon MF, Willems P. Assessment of Rainfall Variability and Its Relationship to ENSO in a Sub-Andean Watershed in Central Bolivia. Water. 2018; 10(6):701. https://doi.org/10.3390/w10060701
Chicago/Turabian StyleGonzales Amaya, Andres, Mauricio F. Villazon, and Patrick Willems. 2018. "Assessment of Rainfall Variability and Its Relationship to ENSO in a Sub-Andean Watershed in Central Bolivia" Water 10, no. 6: 701. https://doi.org/10.3390/w10060701
APA StyleGonzales Amaya, A., Villazon, M. F., & Willems, P. (2018). Assessment of Rainfall Variability and Its Relationship to ENSO in a Sub-Andean Watershed in Central Bolivia. Water, 10(6), 701. https://doi.org/10.3390/w10060701