Water and Suspended Sediment Budgets in the Lower Mekong from High-Frequency Measurements (2009–2016)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Data Analysis
3. Results
3.1. Monthly Averages and Seasonal Variations
3.2. Annual Average and Interannual Variations
3.3. Trends in “In and Out” Fluxes in the Estuaries
4. Discussion
4.1. Data Collection
4.2. Factors Controlling Annual Sediment Transport in the Lower Mekong River
4.2.1. Hydrological Condition
4.2.2. General Impact of ENSO on Water and Sediment Discharges
4.2.3. Influences of ENSO on Seasonal and Annual Sediment Supply
4.2.4. Looking for Breaking Points
4.3. Spatial and Temporal Variation of Annual Sediment Flux in the Mekong River
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Douglas, I. Man, vegetation and the sediment yield of rivers. Nature 1967, 215, 925–928. [Google Scholar] [CrossRef]
- Ahnert, F. Functional relationships between denudation, relief, and uplift in large mid-latitude basins. Am. J. Sci. 1970, 268, 243–263. [Google Scholar] [CrossRef]
- Harrison, C.G.A. What factors control mechanical erosion rates? J. Earth Sci. 2000, 88, 752–763. [Google Scholar] [CrossRef]
- Milliman, J.D.; Meade, R.H. World-wide delivery of river sediment to the oceans. J. Geol. 1983, 91, 1–2. [Google Scholar] [CrossRef]
- Milliman, J.D.; Syvitski, J.P.M. Geomorphic/Tectonic control of sediment discharge to the Ocean: The importance of small mountainous river. J. Geol. 1992, 100, 525–544. [Google Scholar] [CrossRef]
- Farnsworth, K.L.; Milliman, J.D. Effects of climatic and anthropogenic change on small mountainous rivers: The Salinas River example. Glob. Planet. Chang. 2003, 39, 53–64. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.P.M. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet. Chang. 2003, 39, 169–190. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of Humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Walling, D.E. Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 2006, 79, 192–216. [Google Scholar] [CrossRef]
- Ouillon, S. Why and how do we study sediment transport? Focus on coastal zones and ongoing methods. Water 2018, 10, 390. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Wasson, R.; Richey, J. Modelling the Transport and Transformation of Terrestrial Materials to Freshwater and Coastal Ecosystems; Workshop report; International Geosphere-Biosphere Programme: Stockholm, Sweden, 2003; Volume 39, 76p. [Google Scholar]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Syvitski, J.P.; Milliman, J.D. Geology, Geography, and human battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 2007, 115, 1–19. [Google Scholar] [CrossRef]
- Dai, S.B.; Yang, S.L.; Li, M. The sharp decrease in suspended sediment supply from China’s rivers to the sea: Anthropogenic and natural causes. Hydrol. Sci. J. 2009, 54, 135–146. [Google Scholar] [CrossRef]
- Lu, X.X.; Jiang, T. Larger Asian rivers: Climate change, river flow and sediment flux. Quat. Int. 2009, 208, 1–3. [Google Scholar] [CrossRef]
- Cohen, S.; Kettner, A.J.; Syvitski, J.P.M. Global suspended sediment and water discharge dynamics between 1960 and 2010: Continental trends and intra-basin sensitivity. Glob. Planet. Chang. 2014, 115, 44–58. [Google Scholar] [CrossRef]
- Walling, D.E. The changing sediment loads of the world’s rivers. Ann. Warsaw Univ. Life Sci. SGGW Land Reclam. 2008, 39, 3–20. [Google Scholar] [CrossRef]
- Walling, D.E. The changing sediment load of the Mekong. Ambio 2008, 37, 150–157. [Google Scholar] [CrossRef]
- Walling, D.E. The impact of Global Change on Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges; The United Nations World Water Development Report 3; UNESCO: Paris, France, 2009; 26p. [Google Scholar]
- Ludwig, W.; Probst, J.L. River sediment discharge to the oceans: Present-day controls and global budgets. Am. J. Sci. 1998, 298, 265–295. [Google Scholar] [CrossRef]
- Walling, D.E.; Fang, D. Recent trend in suspended sediment load of the world’s river. Glob. Planet. Chang. 2003, 39, 111–126. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Wang, Y.; Saito, Y.; Liu, J.P. Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the 1860. J. Hydrol. 2008, 349, 318–332. [Google Scholar] [CrossRef]
- Xu, K.; Milliman, J.D. Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam. Geomorphology 2009, 104, 276–283. [Google Scholar] [CrossRef]
- Xiong, M.; Xu, Q.; Yuan, J. Analysis of multi-factors affecting sediment load in the three Gorges Reservoir. Quat. Int. 2009, 208, 76–84. [Google Scholar] [CrossRef]
- Dang, T.H.; Coynel, A.; Orange, D.; Blanc, G.; Etcheber, H.; Le, L.A. Long-term monitoring (1960–2008) of the river-sediment transport in the Red River Watershed (Vietnam): Temporal variability and dam-reservoir impact. Sci. Total Environ. 2010, 408, 4654–4664. [Google Scholar] [CrossRef] [PubMed]
- Vinh, V.D.; Ouillon, S.; Tanh, T.D.; Chu, L.V. Impact of the Hoa Binh dam (Vietnam) on water and sediment budgets in the Red River basin and delta. Hydrol. Earth Syst. Sci. 2014, 18, 3987–4005. [Google Scholar] [CrossRef] [Green Version]
- King, P.; Bird, J.; Haas, L. The Current Status of Environmental Criteria for Hydropower Development in the Mekong Region: A Literature Compilation; Consultants Report to ADB (Asian Development Bank), MRCS (Mekong River Commission Secretariat) and WWF (World Wide Fund for Nature); WWF Living Mekong Program: Vientiane, Laos, 2007; 155p. [Google Scholar]
- Keskinen, M.; Kummu, M.; Kakönen, M.; Varis, O. Mekong at the Crossroads: Next Steps for Impact Assessment of Large Dams. Ambio 2012, 41, 319–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keskinen, M.; Chinvanno, S.; Kummu, M.; Nuorteva, P.; Snidvongs, A.; Varis, O.; Vastilä, K. Climate change and water resources in the Lower Mekong River Basin: Putting adaptation into the context. J. Water Clim. Chang. 2010, 1, 103–117. [Google Scholar] [CrossRef]
- Lauri, H.; de Moel, H.; Ward, P.J.; Räsänen, T.A.; Keskinen, M.; Kummu, M. Future changes in Mekong River hydrology: Impact of climate change and reservoir operation on discharge. Hydrol. Earth Syst. Sci. 2012, 16, 4603–4619. [Google Scholar] [CrossRef] [Green Version]
- Adamson, P.T. Hydrological perspectives on the Lower Mekong Basin—The potential impacts of hydropower developments in Yunnan on the downstream flow regime. Int. Water Power Dam Constr. 2001, 53, 16–21. [Google Scholar]
- Asian Development Bank. Laos—Nam Theun 2 Hydroelectric Project (Vol. 5): Cumulative Impact Analysis and Nam Theun 2 Contributions; Final Report, Prepared by NORPLAN and EcoLao for Asian Development Bank; World Bank: Vientiane, Laos, 2004; 540p, Available online: http://documents.worldbank.org/curated/en/332511468046791545/Cumulative-impact-analysis-and-Nam-Thuen-2-contributions-final-report (accessed on 19 September 2017).
- World Bank Report: Modeled Observations on Development Scenarios in the Lower Mekong Basin; Prepared for the World Bank with Mekong River Commission Cooperation; World Bank: Vientiane, Laos, 2004; 146p.
- Kummu, M.; Varis, O. Sediment-related impacts due to upstream reservoir trapping, the Lower Mekong River. Geomorphology 2007, 85, 275–293. [Google Scholar] [CrossRef]
- Kummu, M.; Lu, X.X.; Wang, J.J.; Varis, O. Basinwide sediment trapping efficiency of emerging reservoirs along the Mekong. Geomorphology 2010, 119, 181–197. [Google Scholar] [CrossRef]
- Hoanh, C.T.; Jirayoot, K.; Lacombe, G.; Srinetr, V. Impacts of Climate Change and Development on Mekong Flow Regime, First Assessment—2009; MRC Technical Paper No. 29; Mekong River Commission: Vientiane, Laos, 2010. [Google Scholar]
- Mekong River Commission (MRC). State of the Basin Report; Mekong River Commission: Vientiane, Laos, 2010. [Google Scholar]
- Xue, Z.; Liu, J.P.; Ge, Q.A. Changes in hydrology and sediment delivery of the Mekong River in the last 50 years: Connection to damming, monsoon, and ENSO. Earth Surf. Proc. Land. 2011, 36, 296–308. [Google Scholar] [CrossRef]
- Wang, H.; Saito, Y.; Zhang, Y.; Bi, N.; Sun, X.; Yang, Z. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia. Earth-Sci. Rev. 2011, 108, 80–100. [Google Scholar] [CrossRef]
- Räsänen, T.A.; Koponen, J.; Lauri, H.; Kummu, M. Downstream hydrological impacts of hydropower development in the upper Mekong basin. Water Resour. Manag. 2012, 26, 3495–3513. [Google Scholar] [CrossRef]
- Nguyen, X.H.; Tran, T.; Luong, H.D. Study of water discharge and sediment load variation in the lower Mekong River. In Proceedings of the National Conference on Meteo-Hydrological, Climatic Change and Environment, Ho Chi Minh City, Vietnam, 18–20 July 2013. [Google Scholar]
- Li, X.; Liu, J.P.; Saito, Y.; Nguyen, V.L. Recent evolution of the Mekong Delta and the impacts of dams. Earth-Sci. Rev. 2017, 175, 1–17. [Google Scholar] [CrossRef]
- Piman, T.; Shrestha, M. Case Study on Sediment in the Mekong River Basin: Present State and Future Trends; UNESCO, Stockholm Environment Institute (SEI) Asia Centre: Stockholm, Sweden, 2017; 41p. [Google Scholar]
- Ngoc, T.A. Assessing the Effects of Upstream Dam Developments on Sediment Distribution in the Lower Mekong Delta, Vietnam. J. Water Resour. Prot. 2017, 9, 822–840. [Google Scholar] [CrossRef]
- Ogston, A.S.; Allison, M.A.; Mullarney, J.C.; Nittrouer, C.A. Sediment- and hydro-dynamics of the Mekong Delta: From tidal river to continental shelf (editorial). Cont. Shelf Res. 2017, 147, 1–6. [Google Scholar] [CrossRef]
- Pokhrel, Y.; Burbano, M.; Roush, J.; Kang, H.; Sridhar, V.; Hyndman, D.W. A Review of the Integrated Effects of Changing Climate, Land Use, and Dams on Mekong River Hydrology. Water 2018, 10, 266. [Google Scholar] [CrossRef]
- Fu, K.D.; He, D.M.; Lu, X.X. Sedimentation in the Manwan reservoir in the Upper Mekong and its downstream impacts. Quat. Int. 2008, 186, 91–99. [Google Scholar] [CrossRef]
- Wild, T.B.; Loucks, D.P. Managing flow, sediment, and hydropower regimes in the Sre Pok, Se San, and Se Kong Rivers of the Mekong basin. Water Resour. Res. 2014, 50, 5141–5157. [Google Scholar] [CrossRef]
- Darby, S.E.; Hackney, C.R.; Leyland, J.; Kummu, M.; Lauri, H.; Parsons, D.R.; Best, J.L.; Nicholas, A.P.; Aalto, R. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity. Nature 2016, 539, 276–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gugliotta, M.; Saito, Y.; Nguyen, V.L.; Ta, T.K.O.; Nakashima, R.; Tamura, T.; Uehara, K.; Katsuki, K.; Yamamoto, S. Process regime, salinity, morphological, and sedimentary trends along the fluvial to marine transition zone of the mixed-energy Mekong River delta, Vietnam. Cont. Shelf Res. 2017, 147, 7–26. [Google Scholar] [CrossRef]
- Lu, X.X.; Siew, R.Y. Water discharge and sediment flux changes over the past decades in the Lower Mekong River: Possible impacts of Chinese Dams. Hydrol. Earth Syst. Sci. 2006, 10, 181–195. [Google Scholar] [CrossRef]
- Kite, G. Modelling the Mekong: Hydrological simulation for environmental impact studies. J. Hydrol. 2001, 253, 1–13. [Google Scholar] [CrossRef]
- Unverricht, D.; Szczuciński, W.; Stattegger, K.; Jagodziński, R.; Le, X.T.; Kwong, L.L.W. Modern sedimentation and morphology of the subaqueous Mekong Delta, Southern Vietnam. Glob. Planet. Chang. 2013, 110, 223–235. [Google Scholar] [CrossRef]
- Kummu, M.; Lu, X.X.; Rasphone, A.; Sarkkula, J.; Koponen, J. Riverbank changes along the Mekong River: Remote sensing detection in the Vientiane-Nong Khai area. Quat. Int. 2008, 186, 100–112. [Google Scholar] [CrossRef]
- Ta, T.K.O.; Nguyen, V.L.; Tateishi, M.; Kobayashi, I.; Tanabe, S.; Saito, Y. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam. Quat. Sci. Rev. 2002, 21, 1807–1819. [Google Scholar] [CrossRef]
- Roberts, T. Downstream Ecological Implications of China’s Langcang Hydropower and Mekong Navidation Project; Min, C., Huabin, H., Liming, L., Eds.; Biodiversity Management and Sustainable Development in the Lancang-Mekong River in the New Millennium. Xishuangbanna, China: Yunnan Research & Coordination Office for Lancang-Mekong Sub-regional Cooperation; International Rivers: Oakland, CA, USA, 2001; Available online: https://www.internationalrivers.org/resources/downstream-ecological-implications-of-china-s-lancang-hydropower-and-mekong-navigation (accessed on 3 January 2018).
- Liu, C.; He, Y.; Walling, D.E.; Wang, J.J. Changes in the sediment load of the Lancang-Mekong River over the period 1965–2003. Sci. China Technol. Sci. 2013, 56, 843–852. [Google Scholar] [CrossRef]
- Loisel, H.; Mangin, A.; Vantrepotte, V.; Dessailly, D.; Dinh, N.D.; Garnesson, P.; Ouillon, S.; Lefebvre, J.P.; Mériaux, X.; Phan, M.T. Variability of suspended particulate matter concentration in coastal waters under the Mekong’s influence from ocean color (MERIS) remote sensing over the last decade. Remote Sens. Environ. 2014, 150, 218–230. [Google Scholar] [CrossRef]
- Kiem, A.S.; Hapuarachchi, H.P.; Ishidaira, H.; Magome, J.; Takeuchi, K. Relationship between ENSO and snow covered area in the Mekong and Yellow River basins. IAHS Publ. 2005, 296, 255–264. [Google Scholar]
- Räsänen, T.A.; Kummu, M. Spatiotemporal influences of ENSO on precipitation and flood pulse in the Mekong River Basin. J. Hydrol. 2013, 476, 154–168. [Google Scholar] [CrossRef]
- Fok, H.S.; He, Q.; Chun, K.P.; Zhou, Z.; Chu, T. Application of ENSO and drought indices for water level reconstruction and prediction: A case study in the lower Mekong River Estuary. Water 2018, 10, 58. [Google Scholar] [CrossRef]
- Piton, V.; Delcroix, T. Seasonal and interannual (ENSO) climate variabilities and trends in the South China Sea over the last three decades. Ocean Sci. Discuss. 2018. [Google Scholar] [CrossRef]
- The CGIAR (Consultative Group on International Agricultural Research) Research Program on Water, Land and Ecosystems (WLE). Dataset on the Dams of the Irrawaddy, Mekong, Red and Salween River Basins; International Water Management Institute: Vientiane, Laos, 2016. [Google Scholar]
- Wang, J.J.; Lu, X.X.; Kummu, M. Sediment load estimates and variations in the lower Mekong River. River Res. Appl. 2011, 27, 33–46. [Google Scholar] [CrossRef]
- Bravard, J.P.; Goichot, M.; Tronchère, H. An assessment of sediment-transport processes in the Lower Mekong River based on deposit grain sizes, the CM technique and flow-energy data. Geomorphology 2014, 207, 174–189. [Google Scholar] [CrossRef]
- Brunier, G.; Anthony, E.J.; Goichot, M.; Provansal, M.; Dussouillez, P. Recent morphological changes in the Mekong and Bassac river channels, Mekong delta: The marked impact of river-bed mining and implications for delta stabilization. Geomorphology 2014, 224, 177–191. [Google Scholar] [CrossRef]
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 2015, 5, 14745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogston, A.S.; Allison, M.A.; McLachlan, R.L.; Nowacki, D.J.; Stephens, J.D. How tidal processes impact the transfer of sediment from source to sink: Mekong River collaborative studies. Oceanography 2017, 30, 22–33. [Google Scholar] [CrossRef]
- Xing, F.; Meselhe, E.A.; Allison, M.A.; Weathers III, H.D. Analysis and numerical modelling of the flow and sand dynamics in the lower Song Hau channel, Mekong delta. Cont. Shelf Res. 2017, 147, 62–77. [Google Scholar] [CrossRef]
- Wolanski, E.; Ngoc Huan, N.; Trong Dao, L.; Huu Nhan, N.; Ngoc Thuy, N. Fine sediment dynamics in the Mekong River Estuary, Vietnam. Estuar. Coast. Shelf Sci. 1996, 43, 565–582. [Google Scholar] [CrossRef]
- Wolanski, E.; Nhan, N.H.; Spagnol, S. Sediment dynamics during low flow conditions in the Mekong River Estuary, Vietnam. J. Coast. Res. 1998, 14, 472–482. [Google Scholar]
- Nowacki, D.J.; Ogston, A.S.; Nittrouer, C.A.; Fricke, A.T.; Van, P.D.T. Sediment dynamics in the lower Mekong River: Transition from tidal river to estuary. J. Geophys. Res Oceans 2015, 120, 6363–6383. [Google Scholar] [CrossRef] [Green Version]
- National Centre for Hydro-Meteorology. Variation of Water Discharge and Sediment Flux at Lower Mekong River; Ministry of Natural Resources and Environment (MONRE): Hanoi, Vietnam, 2017; 15p. (In Vietnamese)
- Ministry of Natural Resources and Environment of Vietnam. TCVN 6663-6:2008. Water Quality—Sampling—Part 6: Guidance on Sampling of Rivers and Streams; Ministry of Natural Resources and Environment (MONRE): Hanoi, Vietnam, 2008; 17p. (In Vietnamese)
- Southern Oscillation Index (SOI). Available online: https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/ (accessed on 20 December 2017).
- Searcy, J.K.; Hardison, C.H. Double-Mass Curves; USGS Water-Supply Paper 1541-B; USGS: Washington, DC, USA, 1960.
- Walling, D.E. The response of sediment yields to environmental change, IAHS Publ. 245. In Human Impact on Erosion and Sedimentation; Walling, D.E., Probst, J.L., Eds.; IAHS Press: Wallingford, UK, 1977; pp. 77–89. [Google Scholar]
- Achite, M.; Ouillon, S. Recent changes in climate, hydrology and sediment load in the Wadi Abd, Algeria (1970–2010). Hydrol. Earth Syst. Sci. 2016, 20, 1355–1372. [Google Scholar] [CrossRef] [Green Version]
- Gratiot, N.; Bildstein, A.; Anh, T.T.; Thoss, H.; Denis, H.; Michallet, H.; Apel, H. Sediment flocculation in the Mekong River estuary, Vietnam, an important driver of geomorphological changes. Comptes Rendus Geosci. 2017, 349, 260–268. [Google Scholar] [CrossRef]
- Vinh, V.D.; Ouillon, S.; Uu, D.V. Estuarine Turbidity Maxima and variations of aggregate parameters in the Cam-Nam Trieu estuary, North Vietnam, in early wet season. Water 2018, 10, 68. [Google Scholar] [CrossRef]
- Garel, E.; Nunes, S.; Magalhães Neto, J.; Fernandes, R.; Neves, R.; Marques, J.C.; Ferreira, O. The autonomous Simpatico system for real-time continuous water-quality and current velocity monitoring: Examples of application in three Portuguese estuaries. Geo-Mar. Lett. 2009, 29, 331–341. [Google Scholar] [CrossRef]
- Contreras, E.; Polo, M.J. Measurement frequency and sampling spatial domains required to characterize turbidity and salinity events in the Guadalquivir estuary (Spain). Nat. Hazards Earth Syst. Sci. 2012, 12, 2581–2589. [Google Scholar] [CrossRef] [Green Version]
- Jalón-Rojas, I.; Schmidt, S.; Sottolichio, A. Turbidity in the fluvial Gironde Estuary (southwest France) based on 10-year continuous monitoring: Sensitivity to hydrological conditions. Hydrol. Earth Syst. Sci. 2015, 19, 2805–2819. [Google Scholar] [CrossRef]
- Jalón-Rojas, I.; Schmidt, S.; Sottolichio, A.; Bertier, C. Tracking the turbidity maximum zone in the Loire Estuary (France) based on a long-term, high-resolution and high-frequency monitoring network. Cont. Shelf Res. 2016, 117, 1–11. [Google Scholar] [CrossRef]
- Koehnken, L. Discharge Sediment Monitoring Project (DSMP) 2009–2013: Summary & Analysis of Results; Technical Advice on Water, Final Report; Mekong River Commission Secretariat: Vientiane, Laos, 2014; 126p, Available online: http://portal.mrcmekong.org/assets/documents/Report-workshop/Technical-Report_DSMP/DSMP-Report-2009_13-Final-Report-July-2014.pdf (accessed on 3 January 2018).
- Gupta, A.; Hock, L.; Xiaojing, H.; Ping, C. Evaluation of part of the Mekong River using satellite imagery. Geomorphology 2002, 44, 221–239. [Google Scholar] [CrossRef]
- Adamson, P.T.; Rutherfurd, I.D.; Peel, M.C.; Conlan, I.A. Chapter 4—The hydrology of the Mekong river. In The Mekong, Aquatic Ecology; Campbell, I.C., Ed.; Academic Press: San Diego, CA, USA, 2009; pp. 53–76. [Google Scholar]
- Kondolf, G.M.; Schmitt, R.J.P.; Carling, P.; Darby, P.; Arias, M.; Bizzi, S.; Castelletti, A.; Cochrane, T.A.; Gibson, S.; Kummu, M.; et al. Changing sediment budget of the Mekong: Cumulative threats and management strategies for a large river basin. Sci. Total Environ. 2018, 625, 114–134. [Google Scholar] [CrossRef] [PubMed]
- Brandt, S.A. Classification of geomorphological effects downstream of dams. Catena 2000, 40, 375–401. [Google Scholar] [CrossRef]
- Fu, K.D.; He, D.M. Analysis and prediction of sediment trapping efficiencies of the reservoirs in the mainstream of the Langcang River. Chin. Sci. Bull. 2007, 52, 134–140. [Google Scholar] [CrossRef]
- Vinh, V.D.; Ouillon, S.; Thao, N.V.; Tien, N.N. Numerical Simulations of Suspended Sediment Dynamics Due to Seasonal Forcings in the Mekong Coastal Area. Water 2016, 8, 255. [Google Scholar] [CrossRef]
- Anthony, E.J.; Dussouillez, P.; Dolique, F.; Besset, M.; Brunier, G.; Nguyen, V.L.; Goichot, M. Morphodynamics of an eroding beach and foredune in the Mekong River delta: Implications for deltaic shoreline change. Cont. Shelf Res. 2017, 147, 155–164. [Google Scholar] [CrossRef]
- Schmitt, R.J.P.; Rubin, Z.; Kondolf, G.M. Losing ground—Scenarios of land loss as consequence of shifting sediment budgets in the Mekong delta. Geomorphology 2017, 294, 58–69. [Google Scholar] [CrossRef]
Country | Planned Dams | Proposed Dams |
---|---|---|
China | 11 | 2 |
Laos | 43 | 20 |
Myanmar | 7 | 0 |
Thailand | 7 | 0 |
Cambodia | 12 | 0 |
Vietnam | 1 | 0 |
Total | 74 | 22 |
Dam | Country | Capacity (MW) | Annual Generation (GWh) | Total Storage (million m3) | Commissioning |
---|---|---|---|---|---|
Manwan | China | 1500 | 7870 | 920 | 1986–1993 |
Dachaoshan | China | 1350 | 7090 | 880 | 1997–2002 |
Gongguquiao | China | 750 | 4670 | 510 | 2009–2012 |
Xiaowan | China | 4200 | 18,540 | 15,130 | 2010–2012 |
Jinhong | China | 1500 | 8470 | 1040 | 2012–2013 |
Nuozhadu | China | 5500 | 22,670 | 24,670 | 2013–2016 |
Xayaburi | Laos | 1295 | 6035 | 1300 | 2012–2020 |
Month | Can Tho Station | My Thuan Station | ||
---|---|---|---|---|
Q (m3 s−1) | Qs (Mt month−1) | Q (m3 s−1) | Qs (Mt month−1) | |
January | 3359 | 0.382 | 3725 | 0.392 |
February | 2136 | 0.238 | 2386 | 0.248 |
March | 1330 | 0.141 | 1800 | 0.171 |
April | 1251 | 0.114 | 1860 | 0.121 |
May | 1689 | 0.157 | 2490 | 0.168 |
June | 3360 | 0.530 | 4174 | 0.615 |
July | 6358 | 1.478 | 7361 | 1.998 |
August | 10,296 | 2.688 | 11,194 | 3.636 |
September | 12,502 | 3.900 | 12,687 | 4.802 |
October | 13,270 | 3.988 | 13,414 | 5.378 |
November | 9785 | 1.696 | 9853 | 2.507 |
December | 5624 | 0.882 | 6085 | 1.234 |
Year | Can Tho Station | My Thuan Station | ||
---|---|---|---|---|
Q Annual (m3 s−1) | Qs Annual (Mt yr−1) | Q Annual (m3 s−1) | Qs Annual (Mt yr−1) | |
2009 | 6381 | 34.22 | 6948 | 30.70 |
2010 | 4929 | 11.13 | 5410 | 14.65 |
2011 | 7660 | 23.37 | 8572 | 38.32 |
2012 | 5774 | 12.48 | 6363 | 17.24 |
2013 | 6582 | 15.02 | 6888 | 23.70 |
2014 | 6482 | 16.39 | 6791 | 22.70 |
2015 | 4347 | 8.43 | 4737 | 9.15 |
2016 | 5151 | 8.51 | 5645 | 13.63 |
Min | 4347 | 8.43 | 4737 | 9.15 |
Max | 7660 | 34.22 | 8572 | 38.32 |
CV (%) | 18.1 | 54.1 | 18.4 | 42.4 |
Average | 5913 | 16.20 | 6419 | 21.26 |
Month | Can Tho Station | My Thuan Station | Ratio Can Tho/My Thuan | |||
---|---|---|---|---|---|---|
Cf (mg L−1) | Ce (mg L−1) | Cf (mg L−1) | Ce (mg L−1) | Cf CT/Cf MT | Ce CT/Ce MT | |
January | 31.18 | 38.17 | 23.95 | 32.26 | 1.30 | 1.18 |
February | 32.07 | 38.44 | 24.40 | 32.42 | 1.32 | 1.19 |
March | 34.51 | 36.70 | 22.49 | 27.16 | 1.53 | 1.35 |
April | 35.11 | 35.36 | 22.90 | 23.87 | 1.53 | 1.48 |
May | 30.84 | 31.81 | 20.50 | 22.56 | 1.50 | 1.41 |
June | 32.59 | 46.61 | 33.29 | 47.75 | 0.97 | 0.98 |
July | 58.05 | 74.81 | 56.34 | 90.11 | 1.03 | 0.83 |
August | 68.19 | 92.61 | 72.35 | 114.85 | 0.94 | 0.81 |
September | 68.01 | 117.92 | 91.35 | 142.03 | 0.74 | 0.83 |
October | 49.90 | 106.82 | 60.74 | 138.58 | 0.82 | 0.77 |
November | 33.63 | 63.55 | 46.81 | 92.46 | 0.72 | 0.69 |
December | 31.03 | 52.82 | 41.19 | 70.12 | 0.75 | 0.75 |
CV (%) | 35.13 | 49.09 | 51.31 | 64.85 | 28.92 | 27.86 |
Average | 42.09 | 61.30 | 42.59 | 69.51 | 1.10 | 1.02 |
Period of Q or Qs Averaging | Correlation Coefficient between SOI and Q or Qs | |||||
---|---|---|---|---|---|---|
Q | Qs | |||||
7 m lag | 8 m lag | 9 m lag | 7 m lag | 8 m lag | 9 m lag | |
1 month | 0.27 | 0.26 | 0.23 | 0.38 | 0.41 | 0.41 |
3 months | 0.29 | 0.28 | 0.26 | 0.41 | 0.45 | 0.45 |
5 months | 0.34 | 0.34 | 0.33 | 0.47 | 0.51 | 0.52 |
Period | Can Tho | My Thuan | Total Mekong | ||||||
---|---|---|---|---|---|---|---|---|---|
Flux In | Flux Out | Total | Flux In | Flux Out | Total | Flux In | Flux Out | Total | |
Q 2011 (La Niña) * | 47.9 | 290.2 | 242.3 | 36.7 | 307.9 | 271.2 | 84.6 | 598.1 | 513.5 |
Q 2015–16 (El Niño) * | 70.7 | 221.1 | 150.4 | 57.1 | 221.6 | 164.5 | 127.8 | 442.7 | 314.9 |
Q neutral phase * | 54.4 | 245.2 | 190.8 | 40.4 | 245.6 | 205.2 | 94.9 | 490.9 | 396.0 |
Qs 2011 (La Niña) ** | 1.88 | 25.25 | 23.37 | 1.01 | 39.33 | 38.32 | 2.89 | 64.58 | 61.69 |
Qs 2015–16 (El Niño) ** | 2.11 | 10.58 | 8.47 | 1.74 | 13.13 | 11.39 | 3.84 | 23.70 | 19.86 |
Qs neutral phase ** | 1.93 | 19.77 | 17.85 | 1.11 | 22.91 | 21.80 | 3.04 | 42.68 | 39.65 |
Before 1993 * | 1994–2003 * | 2009–2016 ** | ||||
---|---|---|---|---|---|---|
Q (m3 s−1) | Qs (Mt yr−1) | Q (m3 s−1) | Qs (Mt yr−1) | Q (m3 s−1) | Qs (Mt yr−1) | |
Jiuzhou (1965–2003) | 25 | 27.5 | ||||
Gajiu (1965–2003) | 45.8 | 18.1 | ||||
Chiang Saen (1961–2002, 2009–2013) | 2917 | 71 | 2822 | 37 | 2502 | 12.8 |
Mukdahan (1961–2002, 2009–2013) | 8974 | 144 | 6310 | 140 | 8530 | 91 |
Pakse (1986–2002, 2009–2013) | 12,177 | 165 | 12,303 | 176 | 13,128 | 65.6 |
Tan Chau + Chau Doc (2009–2016) | 13,302 | 45 | ||||
Can Tho + My Thuan (2009–2016) | 12,332 | 37.5 | ||||
Historical delivery to the ocean | 14,904 | 145–160 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thi Ha, D.; Ouillon, S.; Van Vinh, G. Water and Suspended Sediment Budgets in the Lower Mekong from High-Frequency Measurements (2009–2016). Water 2018, 10, 846. https://doi.org/10.3390/w10070846
Thi Ha D, Ouillon S, Van Vinh G. Water and Suspended Sediment Budgets in the Lower Mekong from High-Frequency Measurements (2009–2016). Water. 2018; 10(7):846. https://doi.org/10.3390/w10070846
Chicago/Turabian StyleThi Ha, Dang, Sylvain Ouillon, and Giap Van Vinh. 2018. "Water and Suspended Sediment Budgets in the Lower Mekong from High-Frequency Measurements (2009–2016)" Water 10, no. 7: 846. https://doi.org/10.3390/w10070846
APA StyleThi Ha, D., Ouillon, S., & Van Vinh, G. (2018). Water and Suspended Sediment Budgets in the Lower Mekong from High-Frequency Measurements (2009–2016). Water, 10(7), 846. https://doi.org/10.3390/w10070846