Piecewise-Linear Hedging Rules for Reservoir Operation with Economic and Ecologic Objectives
Abstract
:1. Introduction
2. Methodology
2.1. Pre-Defined Piecewise-Linear Hedging Rules
2.2. Ecological Objective
2.3. Economic Objective
2.4. Constraints
2.5. Vector Evaluated Genetic Algorithm
3. Results
3.1. Study Site
3.2. Ecological Management Target Range
3.3. Pareto-Optimum Solutions
3.4. Monte Carlo Simulation
4. Discussion
4.1. Economic Versus Ecological Objectives under Different Inflow Scenarios
4.2. Ecological Release
4.3. Monte Carlo Simulation Key Indicators Analysis
4.4. Extended Analysis: Impact of Long-Term Forecast Information
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhong, Y.; Power, G. Environmental impacts of hydroelectric projects on fish resources in China. Regul. River 1996, 12, 81–98. [Google Scholar] [CrossRef]
- Joy, M.K.; Death, R.G. Control of fish and cray fish community structure in Taranaki, New Zealand: Dams, Diadromy or Habitat Structure. Freshw. Biol. 2001, 46, 417–429. [Google Scholar] [CrossRef]
- Homa, E.S.; Vogel, R.M.; Smith, M.P.; Apse, C.D.; Huber-Lee, A.; Seiber, J. An optimization approach for balancing human and ecological flow needs. In World Water and Environmental Resources Congress; ASCE: Anchorage, AK, USA, 2005. [Google Scholar]
- Richter, B.D.; Baumgartner, J.V.; Wigington, R.; Braun, D.P. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef]
- Rehn, A.C. Benthic macroinvertebrates as indicators of biological condition below hydropower dams on West Slope Sierra Nevada Streams, California, USA. River Res. Appl. 2009, 25, 208–228. [Google Scholar] [CrossRef]
- Yin, X.A.; Yang, Z.F.; Petts, G.E. A new method to assess the flow regime alterations in riverine ecosystems. River Res. Appl. 2015, 31, 497–504. [Google Scholar] [CrossRef]
- Poff, N.L.R.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Olden, J.D.; Poff, N.L. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Res. Appl. 2003, 19, 101–121. [Google Scholar] [CrossRef]
- Petts, G.E. Instream flow science for sustainable river management. J. Am. Water Resour. Assoc. 2009, 45, 1071–1086. [Google Scholar] [CrossRef]
- Poff, N.L. Managing for variability to sustain freshwater ecosystems. J. Am. Water Resour. Plan. Manag. 2009, 135, 1–4. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef]
- Bayley, P.B. The Flood Pulse Advantage and the Restoration of River-floodplain Systems. River Res. Appl. 1991, 6, 75–86. [Google Scholar] [CrossRef]
- Sparks, R.E. Need for ecosystem management of large rivers and floodplains. BioScience 1995, 45, 168–182. [Google Scholar] [CrossRef]
- Jager, H.I.; Smith, B.T. Sustainable reservoir operation: Can we generate hydropower and preserve ecosystem values? River Res. Appl. 2008, 24, 340–352. [Google Scholar] [CrossRef]
- Suen, J.P.; Eheart, J.W. Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime. Water Resour. Res. 2006, 42, W03417. [Google Scholar] [CrossRef]
- Cardwell, H.; Jager, H.I.; Sale, M.J. Designing instream flows to satisfy fish and human water needs. J. Am. Water Resour. Plan. Manag. 1996, 122, 356–363. [Google Scholar] [CrossRef]
- Ripo, G.C.; Jacobs, J.M.; Good, J.C. An algorithm to integrate ecological indicators with streamflow withdrawals. In ASCE/EWRI World Water and Environmental Resources Congress; American Society of Civil Engineers: Philadelphia, PA, USA, 2003. [Google Scholar]
- Guo, W.X.; Wang, H.X.; Xu, J.X.; Xia, Z.Q. Ecological operation for Three Gorges Reservoir. Water Sci. Eng. 2011, 4, 143–156. [Google Scholar] [CrossRef]
- Yang, Y.C.E.; Cai, X.M. Reservoir reoperation for fish ecosystem restoration using daily inflows-case study of Lake Shelbyvile. J. Am. Water Resour. Plan. Manag. 2011, 137, 470–480. [Google Scholar] [CrossRef]
- Shiau, J.T.; Wu, F.C. Optimizing environmental flows for multiple reaches affected by a multipurpose reservoir system in Taiwan: Restoring natural flow regimes at multiple temporal scales. Water Resour. Res. 2013, 49, 565–584. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.J.; Zhang, L.L.; Zhu, X.P.; Zhang, A.J.; Yin, J.X.; Wang, H. Optimized reservoir operation to balance human and environmental requirements: A case study for the Three Gorges and Gezhouba Dams, Yangtze River basin, China. Econ. Inform. 2013, 18, 40–48. [Google Scholar] [CrossRef]
- Lane, B.A.; Sandoval-Solis, S.; Porse, E.C. Environmental flows in a human-dominated system: Integrated water management strategies for the Rio Grande/Bravo Basin. River Res. Appl. 2015, 31, 1053–1065. [Google Scholar] [CrossRef]
- Yin, X.A.; Yang, Z.F.; Petts, G.E. Optimizing environmental flows below dams. River Res. Appl. 2012, 28, 703–716. [Google Scholar] [CrossRef]
- Haghighi, A.T.; Klove, B. Development of monthly optimal flow regimes for allocated environmental flow considering natural flow regimes and several surface water protection targets. Ecol. Eng. 2015, 82, 390–399. [Google Scholar] [CrossRef]
- Hui, W.; Brill, E.D.; Ranjithan, R.S.; Sankarasubramanian, A. A framework for incorporating ecological release in single reservoir operation. Adv. Water Resour. 2015, 78, 9–21. [Google Scholar] [CrossRef]
- Yin, X.A.; Yang, Z.F.; Petts, G.E. Reservoir operating rules to sustain environmental flows in regulated rivers. Water Resour. Res. 2011, 47, W08509. [Google Scholar] [CrossRef]
- Zhu, X.P.; Zhang, C.; Yin, J.X.; Zhou, H.C.; Jiang, Y.Z. Optimization of Water Diversion Based on Reservoir Operating rules: Analysis of the Biliu River Reservoir, China. J. Hydrol. Eng. 2014, 19, 411–421. [Google Scholar] [CrossRef]
- Tilmant, A.; Beevers, L.; Muyunda, B. Restoring a flow regime through the coordinated operation of a multireservoir system: The case of the Zambezi River basin. Water Resour. Res. 2010, 46, W07533. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, D.; Li, R.; Ma, J.; Blanckaert, K. Adapting the operation of two cascaded reservoirs for ecological flow requirement of a de-watered river channel due to diversion-type hydropower stations. Ecol. Model. 2013, 252, 266–272. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Economou, A. Evaluation of the parameterization-simulation-optimization approach for the control of reservoir systems. Water Resour. Res. 2003, 39, WR00214. [Google Scholar] [CrossRef]
- Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, resilience vulnerability criteria for water resources system performance evaluation. Water Resour. Res. 1982, 18, 14–20. [Google Scholar] [CrossRef]
- Drapper, A.J.; Lund, J.R. Optimal hedging and carryover storage value. J. Am. Water Resour. Plan. Manag. 2004, 130, 83–87. [Google Scholar] [CrossRef]
- Zhao, J.S.; Cai, X.M.; Wang, Z.J. Optimality conditions for a two-stage reservoir operation problem. Water Resour. Res. 2011, 47, W08503. [Google Scholar] [CrossRef]
- Loucks, D.P.; Stedinger, J.R.; Haith, D.A. Water Resource Systems Planning and Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1981. [Google Scholar]
- Tejada-Guibert, J.A.; Johnson, S.A.; Stedinger, J.R. Comparison of two approaches for implementing multireservoir operating policies derived using stochastic dynamic programming. Water Resour. Res. 1993, 29, 3969–3980. [Google Scholar] [CrossRef]
- Karamouz, M.; Houck, M.H.; Delleur, J.W. Optimization and simulation of multiple reservoir system. J. Am. Water Resour. Plan. Manag. 1992, 118, 71–81. [Google Scholar] [CrossRef]
- Tu, M.Y.; Hsu, N.S.; Tsai, T.C.; Yeh, W.W.G. Optimization of Hedging Rules for Reservoir Operations. J. Am. Water Resour. Plan. Manag. 2008, 134, 3–13. [Google Scholar] [CrossRef]
- Taghian, M.; Dan, R.; Haghighi, A.; Madsen, H. Optimization of conventional rule curves coupled with hedging rules for reservoir operation. J. Am. Water Resour. Plan. Manag. 2014, 140, 693–698. [Google Scholar] [CrossRef]
- Shiau, J.T. Analytical optimal hedging with explicit incorporation of reservoir release and carryover storage targets. Water Resour. Res. 2011, 47, 238–247. [Google Scholar] [CrossRef]
- Gao, Y.X.; Vogel, R.M.; Kroll, C.N.; Poff, N.L.; Olden, J.D. Development of representative indicators of hydrologic alteration. J. Hydrol. 2009, 374, 136–147. [Google Scholar] [CrossRef]
- Zhao, T.; Zhao, J.S.; Yang, D.W.; Wang, H. Generalized martingale model of the uncertainty evolution of streamflow forecast. Adv. Water Resour. 2013, 57, 41–45. [Google Scholar] [CrossRef]
- Schaffer, J. Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the 1st International Conference on Genetic Algorithms, Pittsburgh, PA, USA, 24–26 July 1985; Psychology Press: Hillsdale, NJ, USA, 1985; pp. 93–100. [Google Scholar]
No. | Indicator | Unit | Ecological Target Range | Statistical Analysis | ||
---|---|---|---|---|---|---|
P25% | P75% | Expected | SD | |||
IHA1 | October | m3/s | 19.81 | 8.21 | 17.88 | 20.91 |
IHA2 | November | m3/s | 20.52 | 4.26 | 12.68 | 11.3 |
IHA3 | December | m3/s | 20.71 | 5.02 | 11.41 | 9.03 |
IHA4 | January | m3/s | 14.59 | 6.6 | 9.05 | 6.33 |
IHA5 | February | m3/s | 17.25 | 5.02 | 11.44 | 7.62 |
IHA6 | March | m3/s | 21.48 | 2.57 | 13.5 | 9.11 |
IHA7 | April | m3/s | 17.81 | 2.16 | 11.57 | 10.8 |
IHA8 | May | m3/s | 23.1 | 8.2 | 17.36 | 17.06 |
IHA9 | June | m3/s | 36.65 | 9.09 | 24.4 | 17.86 |
IHA10 | July | m3/s | 38.91 | 15.97 | 36.42 | 42.28 |
IHA11 | August | m3/s | 48.18 | 19.29 | 39.97 | 32.7 |
IHA12 | September | m3/s | 25.75 | 7.79 | 21.18 | 20.34 |
IHA13 | 1day-min | m3/s | 2.56 | 0.3 | 0.63 | 1.43 |
IHA14 | 3 day-min | m3/s | 3.19 | 0.24 | 0.85 | 1.97 |
IHA15 | 7 day-min | m3/s | 3.56 | 0.29 | 1.15 | 2.21 |
IHA16 | 30 day-min | m3/s | 7.28 | 0.84 | 2.84 | 3.36 |
IHA17 | 90 day-min | m3/s | 10.08 | 0.91 | 6.68 | 5.15 |
IHA18 | 1 day-max | m3/s | 435.98 | 66.1 | 286.19 | 260.18 |
IHA19 | 3 day-max | m3/s | 329.97 | 55.33 | 205.25 | 192.94 |
IHA20 | 7 day-max | m3/s | 219.25 | 49.42 | 141.09 | 133.33 |
IHA21 | 30 day-max | m3/s | 81.72 | 31.73 | 67.62 | 50.98 |
IHA22 | 90 day-max | m3/s | 51.79 | 23.8 | 41.1 | 24 |
IHA23 | Zero days | days | 93 | 6 | 44.1 | 63.79 |
IHA24 | Base flow | / | 0.24 | 0.03 | 0.05 | 0.1 |
IHA25 | Date of max | / | 276.2 | 122 | 274.93 | 61.4 |
IHA26 | Date of min | / | 260 | 159.6 | 222.9 | 117.792 |
IHA27 | Low count | / | 12 | 4 | 4.55 | 3.25 |
IHA28 | Low duration | days | 16 | 7.22 | 22.94 | 23.62 |
IHA29 | High count | / | 13 | 2 | 7.69 | 3.6 |
IHA30 | High duration | days | 28.75 | 6 | 15.77 | 18.58 |
IHA31 | Fall rate | / | 0.52 | 0.19 | 0.63 | 0.39 |
IHA32 | Rise rate | / | −0.11 | −0.18 | −0.76 | 0.62 |
IHA33 | Reversal | / | 135 | 81 | 121.8 | 32.62 |
Pt. | MinW1 | MinR1 | MaxW1 | MaxR1 | aE1 | bE1 | cE1 | aS1 | bS1 | cS1 | SL1 | MinW2 |
A | 5.14 | 3.14 | 8.09 | 729.09 | 0.6 | 0.44 | 2.89 | 0.7 | −0.95 | 1.89 | 102.51 | 5.13 |
B | 5.9 | 5.58 | 8.03 | 764.83 | 0.93 | −0.35 | 1.83 | 0.74 | 0.99 | 0.82 | 102.99 | 5.33 |
C | 5.48 | 1.71 | 8.09 | 705.23 | 0.62 | −0.8 | 1.83 | 0.32 | 0.05 | 4.81 | 102.99 | 5.66 |
D | 5.35 | 2.72 | 8.09 | 732.35 | 0.47 | 0.38 | 2.32 | 0.4 | −0.07 | 2.61 | 102.55 | 5.4 |
Pt. | MinR2 | MaxW2 | MaxR2 | aE2 | bE2 | cE2 | aS2 | bS2 | cS2 | SL2 | aE3 | bE3 |
A | 8.09 | 8.06 | 712.42 | 0.35 | 0.01 | 2.5 | 0.52 | −0.95 | 0.61 | 97.72 | 0.2 | −0.7 |
B | 6.5 | 8.09 | 714.88 | 0.79 | −0.01 | 2.5 | 0.63 | −0.7 | 3.09 | 98.03 | 0.34 | 0.83 |
C | 7.6 | 8.1 | 776.57 | 0.82 | 0 | 1.08 | 0.76 | 0.16 | 3.69 | 99.14 | 0.83 | 0.1 |
D | 5.53 | 8.07 | 737.35 | 0.63 | −0.45 | 2.55 | 0.47 | 0.17 | 2.45 | 98.49 | 0.51 | 0 |
Pt. | cE3 | aS3 | bS3 | cS3 | SL3 | aE4 | bE4 | cE4 | aS4 | bS4 | cS4 | SL4 |
A | 5.06 | 0.79 | 0.23 | 1.03 | 103.44 | 0.15 | −0.97 | 3.58 | 0.05 | −0.39 | 2.19 | 96.99 |
B | 3.77 | 0.04 | 0.38 | 4.64 | 102.71 | 0.71 | −0.08 | 2.77 | 0.49 | −0.05 | 3.99 | 98.17 |
C | 1.54 | 0.66 | −0.38 | 2.65 | 102.97 | 0.49 | −0.78 | 2.92 | 0.77 | −0.44 | 1.26 | 97.09 |
D | 2.04 | 0.48 | 0 | 2.13 | 62.4 | 0.23 | −0.18 | 1.27 | 0.13 | 0.22 | 0.74 | 97.65 |
Average Annual Discharge | Cv | Cs | |
---|---|---|---|
historical inflow series | 24.37 | 0.33 | 0.83 |
synthetic flow series | 18.70 | 0.40 | 0.74 |
Parameters | MinW1 | MinR1 | MaxW1 | MaxR1 | aE1 | bE1 | cE1 | aS1 | bS1 | cS1 | SL1 | MinW2 | |
PMHRB | Expected | 5.43 | 4.84 | 8.08 | 736.31 | 0.55 | 0.07 | 2.37 | 0.58 | 0.05 | 3.2 | 102.69 | 5.46 |
Median | 5.44 | 5.06 | 8.08 | 737.19 | 0.57 | 0.24 | 2.52 | 0.57 | 0.1 | 3.41 | 102.71 | 5.43 | |
SD | 0.23 | 2.13 | 0.02 | 19.63 | 0.25 | 0.47 | 1.21 | 0.17 | 0.49 | 1.4 | 0.44 | 0.23 | |
Skew | 0.26 | −0.16 | 0.09 | 0.17 | −0.18 | −0.38 | 0.3 | 0.1 | 0.15 | −0.35 | −0.64 | 0.01 | |
PMHRC | Expected | 5.44 | 3.84 | 8.08 | 743.23 | 0.54 | 0.18 | 2.66 | 0.52 | 0.02 | 2.85 | 102.68 | 5.41 |
Median | 5.44 | 4.27 | 8.08 | 741.9 | 0.56 | 0.28 | 2.78 | 0.57 | 0.1 | 3 | 102.67 | 5.43 | |
SD | 0.25 | 2.05 | 0.02 | 18.96 | 0.27 | 0.46 | 1.16 | 0.24 | 0.42 | 1.26 | 0.43 | 0.23 | |
Skew | 0.18 | 0.05 | 0.01 | 0.29 | −0.36 | −0.53 | 0.25 | −0.46 | −0.77 | 0.04 | −0.67 | 0.05 | |
Parameters | MinR2 | MaxW2 | MaxR2 | aE2 | bE2 | cE2 | aS2 | bS2 | cS2 | SL2 | aE3 | bE3 | |
PMHRB | Expected | 5.21 | 8.08 | 739.83 | 0.55 | −0.13 | 2.69 | 0.48 | 0.1 | 3.22 | 98.48 | 0.45 | 0.02 |
Median | 5.47 | 8.08 | 739.72 | 0.59 | −0.03 | 2.63 | 0.44 | 0.19 | 3.2 | 98.55 | 0.4 | −0.01 | |
SD | 2 | 0.02 | 19.61 | 0.24 | 0.2 | 1.33 | 0.24 | 0.5 | 1.1 | 0.35 | 0.21 | 0.49 | |
Skew | −0.32 | −0.34 | −0.18 | −0.25 | −1.41 | −0.06 | −0.01 | −0.32 | −0.02 | −0.43 | 0.74 | 0.18 | |
PMHRC | Expected | 4.47 | 8.08 | 743.41 | 0.54 | −0.27 | 2.58 | 0.46 | 0.33 | 2.67 | 98.45 | 0.45 | 0.08 |
Median | 4.33 | 8.08 | 742.96 | 0.53 | −0.2 | 2.49 | 0.44 | 0.39 | 2.72 | 98.51 | 0.45 | 0.07 | |
SD | 2.07 | 0.03 | 16.29 | 0.25 | 0.3 | 1.11 | 0.21 | 0.41 | 1.26 | 0.38 | 0.21 | 0.45 | |
Skew | 0.13 | 0.23 | −0.14 | −0.17 | −0.61 | 0.11 | −0.08 | −1.27 | 0.09 | −0.29 | 0.65 | −0.04 | |
Parameters | cE3 | aS3 | bS3 | cS3 | SL3 | aE4 | bE4 | cE4 | aS4 | bS4 | cS4 | SL4 | |
PMHRB | Expected | 2.57 | 0.5 | 0.03 | 2.96 | 102.71 | 0.4 | −0.36 | 1.87 | 0.42 | 0.04 | 2 | 97.68 |
Median | 2.46 | 0.52 | 0.02 | 3.01 | 102.06 | 0.32 | −0.24 | 1.82 | 0.42 | 0.11 | 1.96 | 97.7 | |
SD | 0.98 | 0.27 | 0.48 | 1.29 | 0.36 | 0.28 | 0.37 | 1.19 | 0.27 | 0.43 | 1.29 | 0.48 | |
Skew | 0.63 | 0.23 | −0.02 | 0.1 | −0.83 | 0.5 | −0.36 | 0.63 | 0.18 | −0.07 | 0.47 | −0.36 | |
PMHRC | Expected | 2.76 | 0.47 | 0.08 | 2.82 | 102.08 | 0.35 | −0.37 | 2 | 0.4 | 0.25 | 1.93 | 97.55 |
Median | 2.65 | 0.43 | 0.15 | 2.99 | 102.2 | 0.23 | −0.34 | 1.75 | 0.37 | 0.18 | 1.78 | 97.65 | |
SD | 0.87 | 0.24 | 0.54 | 1.22 | 0.36 | 0.26 | 0.28 | 1.34 | 0.25 | 0.38 | 1.31 | 0.45 | |
Skew | 0.16 | 0.57 | −0.47 | 0 | −0.58 | 0.72 | −0.22 | 0.55 | 0.24 | −0.4 | 0.49 | −0.53 |
No. | Frequency | Rules | Economic Objective | Ecological Objective | ||
---|---|---|---|---|---|---|
Expected | Median | Expected | Median | |||
1 | 95% | SOP | 0.99 | 238.65 | ||
PMHRB | 0.57 | 0.58 | 17.89 | 20.38 | ||
PMHRC | 0.6 | 0.64 | 88.02 | 229.25 | ||
2 | 90% | SOP | 1.00 | 165.64 | ||
PMHRB | 0.89 | 0.83 | 12.86 | 11.97 | ||
PMHRC | 0.92 | 0.95 | 43.29 | 61.25 | ||
3 | 75% | SOP | 1.00 | 148.68 | ||
PMHRB | 0.90 | 0.82 | 7.15 | 10.1 | ||
PMHRC | 0.95 | 0.97 | 13.43 | 21.36 | ||
4 | 50% | SOP | 1.00 | 114.05 | ||
PMHRB | 0.99 | 0.99 | 3.53 | 7.23 | ||
PMHRC | 1.00 | 1.00 | 4.97 | 18.08 | ||
5 | 25% | SOP | 1.00 | 193.8 | ||
PMHRB | 0.99 | 0.99 | 3.77 | 6.37 | ||
PMHRC | 1.00 | 1.00 | 2.66 | 7.23 | ||
6 | 10% | SOP | 1.00 | 137.92 | ||
PMHRB | 1.00 | 0.99 | 5.21 | 3.81 | ||
PMHRC | 1.00 | 1.00 | 28.01 | 52.21 |
October | November | December | January | April | May | July | August | September | 30 Day-Min | 90 Day-Min | Low Duration | Reversal | Rise Rate | Fall Rate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SOP | 0 | 1.69 | 0.92 | 2.92 | 0 | 0 | 12.6 | 8.49 | 0 | 0 | 0 | 74 | 5 | 3.37 | −0.57 |
PMHRB | 7.03 | 4.84 | 4.84 | 4.84 | 4.84 | 4.84 | 18.74 | 14.8 | 6.94 | 4.84 | 4.84 | 20.31 | 68 | 0.2 | −0.14 |
PMHRC | 6.65 | 3.84 | 3.84 | 3.84 | 3.84 | 3.84 | 25.03 | 21.04 | 9.53 | 3.84 | 3.84 | 21.5 | 47 | 0.78 | −0.14 |
Upper limit | 19.81 | 20.52 | 20.71 | 14.59 | 17.81 | 23.1 | 38.91 | 48.18 | 25.75 | 7.28 | 10.08 | 28.75 | 135 | 0.52 | −0.11 |
Lower limit | 8.21 | 4.26 | 5.02 | 6.6 | 2.16 | 8.2 | 15.97 | 19.29 | 7.79 | 0.84 | 0.91 | 6 | 81 | 0.19 | −0.18 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhao, J.; Zheng, H. Piecewise-Linear Hedging Rules for Reservoir Operation with Economic and Ecologic Objectives. Water 2018, 10, 865. https://doi.org/10.3390/w10070865
Liu Y, Zhao J, Zheng H. Piecewise-Linear Hedging Rules for Reservoir Operation with Economic and Ecologic Objectives. Water. 2018; 10(7):865. https://doi.org/10.3390/w10070865
Chicago/Turabian StyleLiu, Yueyi, Jianshi Zhao, and Hang Zheng. 2018. "Piecewise-Linear Hedging Rules for Reservoir Operation with Economic and Ecologic Objectives" Water 10, no. 7: 865. https://doi.org/10.3390/w10070865
APA StyleLiu, Y., Zhao, J., & Zheng, H. (2018). Piecewise-Linear Hedging Rules for Reservoir Operation with Economic and Ecologic Objectives. Water, 10(7), 865. https://doi.org/10.3390/w10070865