Optimal Surface Aeration Control in Full-Scale Oxidation Ditches through Energy Consumption Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Orbal Oxidation Ditch
2.2. Energy Consumption Model of a Single Surface Aerator
2.3. Energy Consumption Model of Multiple Surface Aerators
2.4. Online Estimation of In Situ OTR
2.5. Process Monitoring of OUR, DO, Velocity, and Shaft Power
2.6. Experiments for Model Marameter Estimation
2.7. Optimizing Algorithm for Process Control
2.8. Feedforward Control Strategies and Implementation
3. Results
3.1. Fluid Velocity Analysis
3.2. Oxygen Transfer Rate Analysis
3.3. Energy Consumption Analysis
3.4. Control System and Performance
4. Discussion
4.1. Application of the Energy Consumption Model
4.2. Benefits of Actual OTR Estimation
4.3. Low DO Control via Energy Control Loop
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | computational fluidic dynamics | A | coefficient matrix of energy model |
DO | dissolved oxygen | X | independent variable in energy model |
IL | inner lane | P | dependent vector in energy model |
ML | middle lane | Ea | aeration energy consumption |
OL | outer lane | Em | motion energy consumption |
Orbal | a type of oxidation ditch | Ee | total effective energy consumption |
OTR | oxygen transfer rate | ae | energy to transfer 1 g of oxygen |
OTE | oxygen transfer efficiency | ξ | pressure loss coefficient |
OUR | oxygen uptake rate | v | fluidic velocity |
WWTP | wastewater treatment plant | t | time |
vm | maximum fluidic velocity | cosφ | phase coefficient of electricity |
ω | rotating frequency of disks | Ea,t | aeration energy at time t |
h | wet depth of disks | Ea,d | demanded aeration energy |
N | number of running disks | Ea,s | aeration energy of single aerator |
R | oxygen transfer rate | Ka | coefficient in linear form of model |
a | slope to estimate R | Kb | coefficient in linear form of model |
b | intercept to estimate R | Kc | coefficient in linear form of model |
p | power | Kd | coefficient in linear form of model |
AV | area of cross-section of the reactor | Q | influent flow rate |
L12 | length between site 1 and 2 | Cin | influent substrate concentration |
U | voltage to the aerator | Cout | effluent substrate concentration |
I | current to the aerator | Cstd | concentration of discharge criteria |
References
- Lled, C.; Mara, M. Efficiency assessment of wastewater treatment plants: A data envelopment analysis approach integrating technical, economic, and environmental issues. J. Environ. Manag. 2016, 167, 160–166. [Google Scholar]
- Lee, M.; Keller, A.A.; Chiang, P.; Den, W.; Wang, H.; Hou, C.; Wu, J.; Wang, X.; Yan, J. Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Appl. Energy 2017, 205, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Wakeel, M.; Chen, B.; Hayat, T.; Alsaedi, A.; Ahmad, B. Energy consumption for water use cycles in different countries: A review. Appl. Energy 2016, 178, 868–885. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Yang, W.N.; Ngo, H.H.; Guo, W.S.; Jin, P.K.; Dzakpasu, M.; Yang, S.J.; Wang, Q.; Wang, X.C.; Ao, D. Current status of urban wastewater treatment plants in China. Environ. Int. 2016, 92–93, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Wang, X.; Wang, X.; Huu, H.N.; Jin, X. A new step aeration approach towards the improvement of nitrogen removal in a full scale Carrousel oxidation ditch. Bioresour. Technol. 2015, 198, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, N.; Wang, Q.; Wang, Q.; Huang, H.; Wang, X. Upgrading to urban water system 3.0 through sponge city construction. Front. Environ. Sci. Eng. 2017, 11, 9. [Google Scholar] [CrossRef]
- Olsson, G. ICA and me—A subjective review. Water Res. 2012, 46, 1585–1624. [Google Scholar] [CrossRef] [PubMed]
- Ryder, R.A. Dissolved-oxygen control of activated-sludge aeration. Water Res. 1972, 6, 441–445. [Google Scholar] [CrossRef]
- Schraa, O.; Rieger, L.; Alex, J. Development of a model for activated sludge aeration systems: Linking air supply, distribution, and demand. Water Sci. Technol. 2017, 75, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liang, P.; Yan, X.; Zuo, K.; Xiao, K.; Xia, J.; Qiu, Y.; Wu, Q.; Wu, S.; Huang, X.; et al. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application. Water Res. 2016, 93, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Fu, G.; Butler, D. Cost-Effective River Water Quality Management using Integrated Real-Time Control Technology. Environ. Sci. Technol. 2017, 51, 9876–9886. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wang, R.; Li, Y. Evaluation of the control strategy for aeration energy reduction in a nutrient removing wastewater treatment plant based on the coupling of ASM1 to an aeration model. Biochem. Eng. J. 2017, 124, 44–53. [Google Scholar] [CrossRef]
- Foscoliano, C.; Del Vigo, S.; Mulas, M.; Tronci, S. Predictive control of an activated sludge process for long term operation. Chem. Eng. J. 2016, 304, 1031–1044. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Zhang, R.; Li, W.; Ni, B.; Fang, F.; Sheng, G.; Yu, H.; Song, J.; Le, D.; Bi, X.; et al. Simulation and optimization of a full-scale Carrousel oxidation ditch plant for municipal wastewater treatment. Biochem. Eng. J. 2011, 56, 9–16. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, X.; Han, Y.; Liu, J.; Ren, J.; Wang, Y.; Guo, Y. Enhancing nitrogen removal in an Orbal oxidation ditch by optimization of oxygen supply: Practice in a full-scale municipal wastewater treatment plant. Bioprocess Biosyst. Eng. 2012, 35, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, H.; Suenaga, T.; Fujii, T.; Hori, T.; Terada, A.; Hosomi, M. Efficacy of a high-pressure jet device for excess sludge reduction in a conventional activated sludge process: Pilot-scale demonstration. Chem. Eng. J. 2017, 326, 78–86. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, H.; Shi, H.; Xia, L.; Shen, T.; Wang, G.; Wang, Z.; Wang, Y. Study of operational conditions of simultaneous nitrification and denitrification in a Carrousel oxidation ditch for domestic wastewater treatment. Bioresour. Technol. 2010, 101, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shi, H.; Shi, H.; Wang, Z. Study on a discrete-time dynamic control model to enhance nitrogen removal with fluctuation of influent in oxidation ditches. Water Res. 2010, 44, 5150–5157. [Google Scholar] [CrossRef] [PubMed]
- Loubiere, K.; Castaignede, V.; Hebrard, G.; Roustan, M. Bubble formation at a flexible orifice with liquid cross-flow. Chem. Eng. Process. 2004, 43, 717–725. [Google Scholar] [CrossRef] [Green Version]
- Abusam, A.; Keesman, K.J.; Meinema, K.; Van Straten, G. Oxygen transfer rate estimation in oxidation ditches from clean water measurements. Water Res. 2001, 35, 2058–2064. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, H.; Wang, Z.; Fan, L.; Shi, H. Approach to enhancing nitrogen removal performance with fluctuation of influent in an oxidation ditch system. Chem. Eng. J. 2013, 219, 520–526. [Google Scholar] [CrossRef]
- Gimbun, J.; Rielly, C.D.; Nagy, Z.K. Modelling of mass transfer in gas–liquid stirred tanks agitated by Rushton turbine and CD-6 impeller: A scale-up study. Chem. Eng. Res. Des. 2009, 87, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Thakre, S.B.; Bhuyar, L.B.; Deshmukh, S.J. Oxidation ditch process using curved blade rotor as aerator. Int. J. Environ. Sci. Technol. 2009, 6, 113–122. [Google Scholar] [CrossRef]
- Sun, H.; Mao, Z.; Yu, G. Experimental and numerical study of gas hold-up in surface aerated stirred tanks. Chem. Eng. Sci. 2006, 61, 4098–4110. [Google Scholar] [CrossRef]
- Ben Alaya, S.; Haouech, L.; Cherif, H.; Shayeb, H. Aeration management in an oxidation ditch. Desalination 2010, 252, 172–178. [Google Scholar] [CrossRef]
- Li, B.; Qiu, Y.; Zhang, C.; Chen, L.; Shi, H. Understanding biofilm diffusion profiles and microbial activities to optimize integrated fixed-film activated sludge process. Chem. Eng. J. 2016, 302, 269–277. [Google Scholar] [CrossRef]
- Mahendraker, V.; Mavinic, D.S.; Hall, K.J. Comparison of oxygen transfer parameters determined from the steady state oxygen uptake rate and the non-steady-state changing power level methods. J. Environ. Eng. ASCE 2005, 131, 692–701. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J.; Zuo, J.; Li, Y.; He, S.; Yang, X.; Zhang, K. Study on two operating conditions of a full-scale oxidation ditch for optimization of energy consumption and effluent quality by using CFD model. Water Res. 2011, 45, 3439–3452. [Google Scholar] [CrossRef] [PubMed]
- Lesage, N.; Sperandio, M.; Lafforgue, C.; Cockx, A. Calibration and application of a 1-D model for oxidation ditches. Chem. Eng. Res. Des. 2003, 81, 1259–1264. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, X.; Chen, Q.; Liu, J. Flow field and dissolved oxygen distributions in the outer channel of the Orbal oxidation ditch by monitor and CFD simulation. J. Environ. Sci. 2013, 25, 645–651. [Google Scholar] [CrossRef]
- Csepai, L.; Kabelka, H. Practical testing of automatically controlled overflow weirs. Water Res. 1996, 30, 749–752. [Google Scholar] [CrossRef]
- Lu, B.; Du, X.; Huang, S. The economic and environmental implications of wastewater management policy in China: From the LCA perspective. J. Clean. Prod. 2017, 142, 3544–3557. [Google Scholar] [CrossRef]
- Kodra, E.; Sheldon, S.; Dolen, R.; Zik, O. The North American Electric Grid as an Exchange Network: An Approach for Evaluating Energy Resource Composition and Greenhouse Gas Mitigation. Environ. Sci. Technol. 2015, 49, 13692–13698. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Qi, L.; Liu, G.; Zhang, Y.; Fan, Q.; Wang, H. Aeration optimization through operation at low dissolved oxygen concentrations: Evaluation of oxygen mass transfer dynamics in different activated sludge systems. J. Environ. Sci. 2017, 55, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Prades, L.; Dorado, A.D.; Climent, J.; Guimera, X.; Chiva, S.; Gamisans, X. CFD modeling of a fixed-bed biofilm reactor coupling hydrodynamics and biokinetics. Chem. Eng. J. 2017, 313, 680–692. [Google Scholar] [CrossRef] [Green Version]
- Nerenberg, R. The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process. Curr. Opin. Biotechnol. 2016, 38, 131–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Ngo, H.H.; Guo, W.; Peng, L.; Pan, Y.; Guo, J.; Chen, X.; Ni, B. Autotrophic nitrogen removal in membrane-aerated biofilms: Archaeal ammonia oxidation versus bacterial ammonia oxidation. Chem. Eng. J. 2016, 302, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Pittoors, E.; Guo, Y.; Van Hulle, S.W.H. Oxygen transfer model development based on activated sludge and clean water in diffused aerated cylindrical tanks. Chem. Eng. J. 2014, 243, 51–59. [Google Scholar] [CrossRef]
- Keene, N.A.; Reusser, S.R.; Scarborough, M.J.; Grooms, A.L.; Seib, M.; Domingo, J.S.; Noguera, D.R. Pilot plant demonstration of stable and efficient high rate biological nutrient removal with low dissolved oxygen conditions. Water Res. 2017, 121, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Han, Y.; Guo, X. Identification and evaluation of SND in a full-scale multi-channel oxidation ditch system under different aeration modes. Chem. Eng. J. 2015, 259, 715–723. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Gao, M.; Liu, J.X. Distribution characterization of microbial aerosols emitted from a wastewater treatment plant using the Orbal oxidation ditch process. Process Biochem. 2011, 46, 910–915. [Google Scholar] [CrossRef]
- He, Q.; Zhu, Y.; Li, G.; Fan, L.; Ai, H.; Huangfu, X.; Li, H. Impact of dissolved oxygen on the production of nitrous oxide in biological aerated filters. Front. Environ. Sci. Eng. 2017, 11, 141–151. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Zhang, C.; Li, B.; Li, J.; Zhang, X.; Liu, Y.; Liang, P.; Huang, X. Optimal Surface Aeration Control in Full-Scale Oxidation Ditches through Energy Consumption Analysis. Water 2018, 10, 945. https://doi.org/10.3390/w10070945
Qiu Y, Zhang C, Li B, Li J, Zhang X, Liu Y, Liang P, Huang X. Optimal Surface Aeration Control in Full-Scale Oxidation Ditches through Energy Consumption Analysis. Water. 2018; 10(7):945. https://doi.org/10.3390/w10070945
Chicago/Turabian StyleQiu, Yong, Chi Zhang, Bing Li, Ji Li, Xiaoyuan Zhang, Yanchen Liu, Peng Liang, and Xia Huang. 2018. "Optimal Surface Aeration Control in Full-Scale Oxidation Ditches through Energy Consumption Analysis" Water 10, no. 7: 945. https://doi.org/10.3390/w10070945
APA StyleQiu, Y., Zhang, C., Li, B., Li, J., Zhang, X., Liu, Y., Liang, P., & Huang, X. (2018). Optimal Surface Aeration Control in Full-Scale Oxidation Ditches through Energy Consumption Analysis. Water, 10(7), 945. https://doi.org/10.3390/w10070945