Monitoring Coastal Chlorophyll-a Concentrations in Coastal Areas Using Machine Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Satellite and Field Sampling Data
2.3. Atmospheric Correction of Satellite Data
2.4. Model for Predicting Chl-a Concentration
2.4.1. OC Algorithm
2.4.2. ANN Model
2.4.3. SVR Model
2.5. Evaluation of Model Performance
3. Results and Discussion
3.1. Atmospherically Corrected Rrs Spectra
3.2. Retrieval Results Using the OC Algorithms
3.3. Determination of Optimized Model Parameters
3.4. Retrieval Results Using the Machine Learning Algorithms
4. Conclusions
- Seven OC algorithms were evaluated after applying various calibration gains. All OC algorithms showed poor performance using Landsat-8 satellite data. OC1c showed the best performance among the OC algorithms with an R2 of 0.2992. The R2 values of OC2 and OC2b were less than 0.1.
- The ANN and SVR models showed better estimation performance than that of the OC algorithms. Compared to previous studies using oceanic color sensors, the machine-learning techniques using Landsat-8 images showed satisfactory performance.
- The SVR model showed slightly better results than those of the ANN model during the training and validation steps. The four-band-ratio dataset SVR is not appropriate for chl-a estimation. However, the ANN model generated a more reasonable and reliable distribution of chl-a as compared to the raw image.
Author Contributions
Funding
Conflicts of Interest
References
- Anderson, D.M. Toxic algal blooms and red tides: A global perspective. In Red Tides: Biology, Environmental Science and Toxicology; Elsevier: Amsterdam, The Netherlands, 1989; pp. 11–16. [Google Scholar]
- Berdalet, E.; Fleming, L.E.; Gowen, R.; Davidson, K.; Hess, P.; Backer, L.C.; Moore, S.K.; Hoagland, P.; Enevoldsen, H. Marine harmful algal blooms, human health and wellbeing: Challenges and opportunities in the 21st century. J. Mar. Biol. Assoc. UK 2016, 96, 61–91. [Google Scholar] [CrossRef] [PubMed]
- Glibert, P.M.; Anderson, D.M.; Gentien, P.; Granéli, E.; Sellner, K.G. The global, complex phenomena of harmful algal blooms. Oceanography 2005, 18, 136–147. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef]
- Lee, C.K.; Park, T.G.; Park, Y.T.; Lim, W.A. Monitoring and trends in harmful algal blooms and red tides in korean coastal waters, with emphasis on cochlodinium polykrikoides. Harmful Algae 2013, 30, S3–S14. [Google Scholar] [CrossRef]
- Moore, S.K.; Trainer, V.L.; Mantua, N.J.; Parker, M.S.; Laws, E.A.; Backer, L.C.; Fleming, L.E. Impacts of climate variability and future climate change on harmful algal blooms and human health. Environ. Health 2008, 7, S4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heil, C.A.; Glibert, P.M.; Al-Sarawi, M.A.; Faraj, M.; Behbehani, M.; Husain, M. First record of a fish-killing gymnodinium sp bloom in kuwait bay, arabian sea: Chronology and potential causes. Mar. Ecol. Prog. Ser. 2001, 214, 15–23. [Google Scholar] [CrossRef]
- Glibert, P.M.; Landsberg, J.H.; Evans, J.J.; Al-Sarawi, M.A.; Faraj, M.; Al-Jarallah, M.A.; Haywood, A.; Ibrahem, S.; Klesius, P.; Powell, C. A fish kill of massive proportion in kuwait bay, arabian gulf, 2001: The roles of bacterial disease, harmful algae, and eutrophication. Harmful Algae 2002, 1, 215–231. [Google Scholar] [CrossRef]
- Shumway, S.E. A review of the effects of algal blooms on shellfish and aquaculture. J. World Aquac. Soc. 1990, 21, 65–104. [Google Scholar] [CrossRef]
- Hoagland, P.; Anderson, D.M.; Kaoru, Y.; White, A.W. The economic effects of harmful algal blooms in the united states: Estimates, assessment issues, and information needs. Estuaries 2002, 25, 819–837. [Google Scholar] [CrossRef]
- Park, T.G.; Lim, W.A.; Park, Y.T.; Lee, C.K.; Jeong, H.J. Economic impact, management and mitigation of red tides in Korea. Harmful Algae 2013, 30, S131–S143. [Google Scholar] [CrossRef]
- Jeong, H.J.; Yoo, Y.D.; Kim, J.S.; Seong, K.A.; Kang, N.S.; Kim, T.H. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 2010, 45, 65–91. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.J. The ecological roles of heterotrophic dinoflagellates in marine planktonic community. J. Eukaryot. Microbiol. 1999, 46, 390–396. [Google Scholar] [CrossRef]
- Qi, Y.; Hong, Y.; Lu, S.; Chu, J.; Zhang, J.; Zhu, C.; Li, Y.; Liang, S.; Li, J. Outbreak of chattonella marina red tide and its relations to ecological parameters in dapeng bay, South China Sea. Oceanol. Limnol. Sin. 1994, 25, 132–137. (In Chinese) [Google Scholar]
- Hu, C.; Murch, B.; Corcoran, A.A.; Zheng, L.; Barnes, B.B.; Weisberg, R.H.; Atwood, K.; Lenes, J.M. Developing a smart semantic web with linked data and models for near-real-time monitoring of red tides in the eastern Gulf of Mexico. IEEE Syst. J. 2016, 10, 1282–1290. [Google Scholar] [CrossRef]
- Stumpf, R.P. Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms. Hum. Ecol. Risk Assess. Int. J. 2001, 7, 1363–1368. [Google Scholar] [CrossRef]
- Carvalho, G.A.; Minnett, P.J.; Fleming, L.E.; Banzon, V.F.; Baringer, W. Satellite remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the florida red tide (Karenia brevis). Harmful Algae 2010, 9, 440–448. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for seawifs. J. Geophys. Res. 1998, 103, 24937–24953. [Google Scholar] [CrossRef]
- Kim, Y.; Byun, Y.; Kim, Y.; Eo, Y. Detection of cochlodinium polykrikoides red tide based on two-stage filtering using modis data. Desalination 2009, 249, 1171–1179. [Google Scholar] [CrossRef]
- Son, Y.B.; Ishizaka, J.; Jeong, J.-C.; Kim, H.-C.; Lee, T. Cochlodinium polykrikoides red tide detection in the south sea of korea using spectral classification of modis data. Ocean Sci. J. 2011, 46, 239–263. [Google Scholar] [CrossRef]
- Ahn, Y.-H.; Shanmugam, P. Detecting the red tide algal blooms from satellite ocean color observations in optically complex Northeast-Asia coastal waters. Remote Sens. Environ. 2006, 103, 419–437. [Google Scholar] [CrossRef]
- Woodruff, D.L.; Stumpf, R.P.; Scope, J.A.; Paerl, H.W. Remote estimation of water clarity in optically complex estuarine waters. Remote Sens. Environ. 1999, 68, 41–52. [Google Scholar] [CrossRef]
- Wynne, T.T.; Stumpf, R.P.; Tomlinson, M.C.; Ransibrahmanakul, V.; Villareal, T.A. Detecting karenia brevis blooms and algal resuspension in the western gulf of mexico with satellite ocean color imagery. Harmful Algae 2005, 4, 992–1003. [Google Scholar] [CrossRef]
- Gregg, W.W.; Conkright, M.E. Global seasonal climatologies of ocean chlorophyll: Blending in situ and satellite data for the coastal zone color scanner era. J. Geophys. Res. 2001, 106, 2499–2515. [Google Scholar] [CrossRef]
- Boss, E.; Swift, D.; Taylor, L.; Brickley, P.; Zaneveld, R.; Riser, S.; Perry, M.; Strutton, P. Observations of pigment and particle distributions in the western north atlantic from an autonomous float and ocean color satellite. Limnol. Oceanogr. 2008, 53, 2112–2122. [Google Scholar] [CrossRef]
- Onitsuka, G.; Yanagi, T.; Yoon, J.H. A numerical study on nutrient sources in the surface layer of the Japan Sea using a coupled physical-ecosystem model. J. Geophys. Res. 2007, 112, C05042. [Google Scholar] [CrossRef]
- Morimoto, A.; Takikawa, T.; Onitsuka, G.; Watanabe, A.; Moku, M.; Yanagi, T. Seasonal variation of horizontal material transport through the eastern channel of the Tsushima Straits. J. Oceanogr. 2009, 65, 61–71. [Google Scholar] [CrossRef]
- Kim, H.G. Recent harmful algal blooms and mitigation strategies in Korea. Oceanogr. Lit. Rev. 1998, 7, 1163–1164. [Google Scholar]
- Jeong, H.J.; Du Yoo, Y.; Lee, K.H.; Kim, T.H.; Seong, K.A.; Kang, N.S.; Lee, S.Y.; Kim, J.S.; Kim, S.; Yih, W.H. Red tides in Masan Bay, Korea in 2004–2005: I. Daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae 2013, 30, S75–S88. [Google Scholar] [CrossRef]
- Yang, J.-S.; Choi, H.-Y.; Jeong, H.-J.; Jeong, J.-Y.; Park, J.-K. The outbreak of red tides in the coastal waters off Kohung, Chonnam, Korea: 1. Physical and chemical characteristics in 1997. Sea 2000, 5, 16–26. [Google Scholar]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Gatebe, C.K.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. Atmospheric correction over coastal waters using multilayer neural networks. Remote Sens. Environ. 2017, 199, 218–240. [Google Scholar] [CrossRef]
- Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the c2rcc neural network for sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. In Proceedings of the Living Planet Symposium, Pregue, Czech Republic, 9–13 May 2016; Ouwehand, L., Ed.; ESA: Paris, France, 2016; p. 54. [Google Scholar]
- Franz, B.A.; Bailey, S.W.; Kuring, N.; Werdell, P.J. Ocean color measurements with the operational land imager on Landsat-8: Implementation and evaluation in seadas. J. Appl. Remote Sens. 2015, 9, 096070. [Google Scholar] [CrossRef]
- Singh, K.P.; Basant, A.; Malik, A.; Jain, G. Artificial neural network modeling of the river water quality—A case study. Ecol. Model. 2009, 220, 888–895. [Google Scholar] [CrossRef]
- Maier, H.R.; Dandy, G.C. The use of artificial neural networks for the prediction of water quality parameters. Water Resour. Res. 1996, 32, 1013–1022. [Google Scholar] [CrossRef]
- Maier, H.R.; Morgan, N.; Chow, C.W.K. Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environ. Model. Softw. 2004, 19, 485–494. [Google Scholar] [CrossRef]
- Cho, K.H.; Sthiannopkao, S.; Pachepsky, Y.A.; Kim, K.W.; Kim, J.H. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network. Water Res. 2011, 45, 5535–5544. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Kim, M.; Pachepsky, Y.; Choi, S.-H.; Cho, J.-G.; Jeon, J.; Cho, K.H. Development of a nowcasting system using machine learning approaches to predict fecal contamination levels at recreational beaches in Korea. J. Environ. Qual. 2018. [Google Scholar] [CrossRef]
- Kim, M.; Baek, S.; Ligaray, M.; Pyo, J.; Park, M.; Cho, K.H. Comparative studies of different imputation methods for recovering streamflow observation. Water 2015, 7, 6847–6860. [Google Scholar] [CrossRef]
- Park, Y.; Pyo, J.; Kwon, Y.S.; Cha, Y.; Lee, H.; Kang, T.; Cho, K.H. Evaluating physico-chemical influences on cyanobacterial blooms using hyperspectral images in inland water, Korea. Water Res. 2017, 126, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Farifteh, J.; Van der Meer, F.D.; Atzberger, C.; Carranza, E.J.M. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (plsr and ann). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Moody, A.; Gopal, S.; Strahler, A.H. Artificial neural network response to mixed pixels in coarse-resolution satellite data. Remote Sens. Environ. 1996, 58, 329–343. [Google Scholar] [CrossRef]
- Norgaard, M.; Ravn, O.; Poulsen, N.; Hansen, L. Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook. Advanced Textbooks in Control and Signal Processing; Springer: Berlin, Germany, 2000. [Google Scholar]
- Demuth, H.; Beale, M.; Hagan, M. Neural Network Toolbox™ 6 User’s Guide; The MathWorks, Inc.: Natick, MA, USA, 2008; pp. 37–55. Available online: http://kashanu.ac.ir/Files/Content/neural_network_toolbox_6.pdf (accessed on 15 September 2015).
- Yu, H.; Wilamowski, B.M. Levenberg–marquardt training. In Industrial Electronics Handbook; CRC: Boca Raton, FL, USA, 2011; Volume 5. [Google Scholar]
- Park, Y.; Cho, K.H.; Park, J.; Cha, S.M.; Kim, J.H. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. Sci. Total Environ. 2015, 502, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Ligaray, M.; Kim, Y.M.; Kim, J.H.; Cho, K.H.; Sthiannopkao, S. Development of enhanced groundwater arsenic prediction model using machine learning approaches in Southeast Asian countries. Desalination Water Treat. 2016, 57, 12227–12236. [Google Scholar] [CrossRef]
- Guo, H.; Jeong, K.; Lim, J.; Jo, J.; Kim, Y.M.; Park, J.-P.; Kim, J.H.; Cho, K.H. Prediction of effluent concentration in a wastewater treatment plant using machine learning models. J. Environ. Sci. 2015, 32, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.S.; Liu, W.T.; Tang, B.Y. Spacebased estimation of moisture transport in marine atmosphere using support vector regression. Remote Sens. Environ. 2008, 112, 1846–1855. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Concha, J.A.; Schott, J.R. Retrieval of color producing agents in case 2 waters using Landsat 8. Remote Sens. Environ. 2016, 185, 95–107. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Advantages of high quality swir bands for ocean colour processing: Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef]
- Bricaud, A.; Morel, A.; Babin, M.; Allali, K.; Claustre, H. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. J. Geophys. Res. 1998, 103, 31033–31044. [Google Scholar] [CrossRef]
- Dierssen, H.; Smith, R. Bio-optical properties and remote sensing ocean color algorithms for antarctic peninsula waters. J. Geophys. Res. 2000, 105, 26301–26312. [Google Scholar] [CrossRef]
- Kahru, M.; Mitchell, B.G. Empirical chlorophyll algorithm and preliminary seawifs validation for the california current. Int. J. Remote Sens. 1999, 20, 3423–3429. [Google Scholar] [CrossRef]
- Sancak, S.; Besiktepe, S.T.; Yilmaz, A.; Lee, M.; Frouin, R. Evaluation of seawifs chlorophyll-a in the Black and Mediterranean Seas. Int. J. Remote Sens. 2005, 26, 2045–2060. [Google Scholar] [CrossRef]
- Tassan, S. Local algorithms using seawifs data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters. Appl. Opt. 1994, 33, 2369–2378. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, N.; Watanabe, F.; Rodrigues, T.; Alcantara, E. Atmospheric correction issues for retrieving total suspended matter concentrations in inland waters using OLI/Landsat-8 image. Adv. Space Res. 2017, 59, 2335–2348. [Google Scholar] [CrossRef]
- Murphy, R.E.; Barnes, W.L.; Lyapustin, A.I.; Privette, J.; Welsch, C.; DeLuccia, F.; Swenson, H.; Schueler, C.F.; Ardanuy, P.E.; Kealy, P.S. Using viirs to provide data continuity with modis. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, 9–13 July 2001; pp. 1212–1214. [Google Scholar]
- Hooker, S.B.; Firestone, E.R.; Esaias, W.E.; Feldman, G.C.; Gregg, W.W.; Mcclain, C.R. SeaWiFS Technical Report Series. Volume 1: An overview of SeaWiFS and Ocean Color; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1992; Volume 1, pp. 1–24.
- Decker, A.; Malthus, T.; Wijnen, M.; Seyhan, E. The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters. Remote Sens. Environ. 1992, 41, 211–225. [Google Scholar] [CrossRef]
- Dzwonkowski, B.; Yan, X.H. Development and application of a neural network based ocean colour algorithm in coastal waters. Int. J. Remote Sens. 2005, 26, 1175–1200. [Google Scholar] [CrossRef]
- Vilas, L.G.; Spyrakos, E.; Palenzuela, J.M.T. Neural network estimation of chlorophyll a from meris full resolution data for the coastal waters of galician rias (NW Spain). Remote Sens. Environ. 2011, 115, 524–535. [Google Scholar] [CrossRef]
- Zhan, H.G.; Shi, P.; Chen, C.Q. Retrieval of oceanic chlorophyll concentration using support vector machines. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2947–2951. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Göritz, A.; Gege, P.; Pflug, B.; Oppelt, N. Water constituents and water depth retrieval from sentinel-2a—A first evaluation in an oligotrophic lake. Remote Sens. 2016, 8, 941. [Google Scholar] [CrossRef]
- Pahlevan, N.; Lee, Z.; Wei, J.; Schaaf, C.B.; Schott, J.R.; Berk, A. On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sens. Environ. 2014, 154, 272–284. [Google Scholar] [CrossRef]
- Blix, K.; Eltoft, T. Machine learning automatic model selection algorithm for oceanic chlorophyll-a content retrieval. Remote Sens. 2018, 10, 775. [Google Scholar] [CrossRef]
Band | Wavelength (nm) | Spatial Resolution (m) | |||
---|---|---|---|---|---|
Minimum | Center | Maximum | Range | ||
1 | 433 | 443 | 453 | 20 | 30 |
2 | 450 | 482.5 | 515 | 65 | 30 |
3 | 525 | 562.5 | 600 | 75 | 30 |
4 | 630 | 655 | 680 | 50 | 30 |
5 | 845 | 865 | 885 | 40 | 30 |
6 | 1560 | 1610 | 1660 | 100 | 30 |
7 | 2100 | 2200 | 2300 | 200 | 30 |
8 | 500 | 590 | 680 | 180 | 15 |
9 | 1360 | 1375 | 1390 | 30 | 30 |
Satellite Image Data | Field Sampling Data | ||||
---|---|---|---|---|---|
Image Name | Date | Path/Low | Survey Period | Number of Data | Chl-a Concentration (mg m−3) |
LC08_L1TP_114036_20170422_20170501_01_T1 | 22 April 2017 | 114/36 | 25–26 April 2017 | 18 | Min: 0.380 |
Max: 2.392 | |||||
Median: 0.957 | |||||
LC08_L1TP_115036_20170616_20170629_01_T1 | 16 June 2017 | 115/36 | 19–21 June 2017 | 34 | Min: 0.281 |
Max: 3.426 | |||||
Median: 1.087 | |||||
LC08_L1TP_114036_20170812_20170824_01_T1 | 12 August 2017 | 114/36 | 14–16 August 2017 | 18 | Min: 0.584 |
Max: 4.087 | |||||
Median: 1.695 | |||||
LC08_L1TP_114036_20170913_20170928_01_T1 | 13 September 2017 | 114/36 | 12–13 September 2017 | 23 | Min: 1.442 |
Max: 6.191 | |||||
Median: 3.931 |
OC Algorithm | Coefficient | R2 | ||||
---|---|---|---|---|---|---|
a0 | a1 | a2 | a3 | a4 | ||
OC1a | 0.3734 | −2.4529 | - | - | - | 0.2972 |
OC1b | 0.3636 | −2.3500 | −0.0100 | - | - | 0.2957 |
OC1c | 0.3920 | −2.8500 | 0.6580 | - | - | 0.2992 |
OC1d | 0.3335 | −2.9164 | 2.4686 | −2.5195 | - | 0.2930 |
OC2b | 0.1909 | −1.9961 | 1.3020 | −0.5091 | −0.0815 | 0.0194 |
OC2 | 0.3410 | −3.0010 | 2.8110 | −2.0410 | −0.0400 | 0.0620 |
OC3d | 0.3483 | −2.9959 | 2.9873 | −1.4813 | −0.0597 | 0.2960 |
Models | Parameter | Four-Band | Four-Band-Ratio | Mixed Dataset |
---|---|---|---|---|
ANN | Learning rate | 0.5000 | 0.1250 | 0.4980 |
Momentum constant | 0.5625 | 0 | 0.9990 | |
Number of hidden layer nodes | 6 | 7 | 4 | |
SVR | Epsilon | 0.0583 | 0.0505 | 0.0999 |
Kernel scale | 2.0005 | 500.0005 | 2.9848 | |
Box constraint | 206.5474 | 533.9840 | 511.2826 |
Dataset | Performance | Four-Band | Four-Band-Ratio | Mixed Dataset | |||
---|---|---|---|---|---|---|---|
ANN | SVR | ANN | SVR | ANN | SVR | ||
Training | R2 | 0.4368 | 0.7119 | 0.6663 | 0.0082 | 0.6621 | 0.6948 |
RMSE | 1.0444 | 0.7442 | 0.8626 | 1.5337 | 0.8713 | 0.8294 | |
Validation | R2 | 0.6322 | 0.7648 | 0.3886 | 0.0056 | 0.2199 | 0.6263 |
RMSE | 1.2187 | 0.9633 | 1.3619 | 1.5849 | 1.5943 | 0.9933 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, Y.S.; Baek, S.H.; Lim, Y.K.; Pyo, J.; Ligaray, M.; Park, Y.; Cho, K.H. Monitoring Coastal Chlorophyll-a Concentrations in Coastal Areas Using Machine Learning Models. Water 2018, 10, 1020. https://doi.org/10.3390/w10081020
Kwon YS, Baek SH, Lim YK, Pyo J, Ligaray M, Park Y, Cho KH. Monitoring Coastal Chlorophyll-a Concentrations in Coastal Areas Using Machine Learning Models. Water. 2018; 10(8):1020. https://doi.org/10.3390/w10081020
Chicago/Turabian StyleKwon, Yong Sung, Seung Ho Baek, Young Kyun Lim, JongCheol Pyo, Mayzonee Ligaray, Yongeun Park, and Kyung Hwa Cho. 2018. "Monitoring Coastal Chlorophyll-a Concentrations in Coastal Areas Using Machine Learning Models" Water 10, no. 8: 1020. https://doi.org/10.3390/w10081020
APA StyleKwon, Y. S., Baek, S. H., Lim, Y. K., Pyo, J., Ligaray, M., Park, Y., & Cho, K. H. (2018). Monitoring Coastal Chlorophyll-a Concentrations in Coastal Areas Using Machine Learning Models. Water, 10(8), 1020. https://doi.org/10.3390/w10081020