Reducing High Flows and Sediment Loading through Increased Water Storage in an Agricultural Watershed of the Upper Midwest, USA
Abstract
:1. Introduction
1.1. Background and Study Area
1.2. High Flow Attenuation
1.3. Research Questions and Approach
2. Methods
2.1. WRS Definition
2.2. SWAT Model
2.3. Wetland Representation in SWAT
2.4. WRS Implementation Scenarios
2.5. Flow-Reduction Assessment
2.6. Sediment Loading Assessment
3. Results
3.1. Contributing-Area Relationships
3.2. Flow Reductions
3.3. Sediment-Loading Reductions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dahl, T.E.; Allord, G.J. History of wetlands in the conterminous United States. In National Summary on Wetland Resources; United States Geological Survey (USGS) and the US Government Printing Office: Washington, DC, USA, 1996; pp. 19–26. [Google Scholar]
- Blann, K.L.; Anderson, J.L.; Sands, G.R.; Vondracek, B. Effects of agricultural drainage on aquatic ecosystems: A review. Crit. Rev. Environ. Sci. Technol. 2009, 39, 909–1001. [Google Scholar] [CrossRef]
- Lenhart, C.F.; Verry, E.S.; Brooks, K.N.; Magner, J.A. Adjustment of prarie pothole streams to land-use, drainage, and climate changes and consequences for turbidity impairment. River Res. Appl. 2012, 28, 1609–1619. [Google Scholar] [CrossRef]
- Schottler, S.P.; Ulrich, J.; Belmont, P.; Moore, R.; Lauer, J.W.; Engstrom, D.R.; Almendinger, J.E. Twentieth century agricultural drainage creates more erosive rivers. Hydrol. Process. 2014, 10, 1951–1961. [Google Scholar] [CrossRef]
- Kelly, S.; Takbiri, Z.; Belmont, P.; Foufoula-Georgiou, E. Human amplified changes in precipitation-runoff patterns in large river basins of the Midwestern United States. Hydrol. Earth Syst. Sci. 2017, 21, 5065. [Google Scholar] [CrossRef]
- Novotny, E.V.; Stefan, H.G. Stream flow in Minnesota: Indicator of climate change. J. Hydrol. 2007, 334, 319–333. [Google Scholar] [CrossRef] [Green Version]
- Belmont, P.; Gran, K.B.; Schottler, S.P.; Wilcock, P.R.; Day, S.S.; Jennings, C.; Lauer, J.; Viparelli, E.; Willenbring, J.; Engstrom, D.; et al. Large shift in source of fine sediment in the Upper Mississippi River. Environ. Sci. Technol. 2011, 45, 8804–8810. [Google Scholar] [CrossRef] [PubMed]
- Gran, K.B.; Belmont, P.; Day, S.S.; Finnegan, N.; Jennings, C.; Lauer, J.W.; Wilcock, P.R. Landscape evolution in south-central Minnesota and the role of geomorphic history on modern erosional processes. GSA Today 2011, 21, 7–9. [Google Scholar] [CrossRef]
- Lauer, J.W.; Echterling, C.; Lenhart, C.; Belmont, P.; Rausch, R. Air-photo based change in channel width in the Minnesota River basin: Modes of adjustment and implications for sediment budget. Geomorphology 2017, 297, 170–184. [Google Scholar] [CrossRef]
- Belmont, P.; Foufoula-Georgiou, E. Solving water quality problems in agricultural landscapes: New approaches for these nonlinear, multi-process, multi-scale systems. Water Resour. Res. 2017, 53, 2585–2590. [Google Scholar] [CrossRef]
- Lenhart, C.F.; Smith, D.J.; Lewandowski, A.; Belmont, P.; Gunderson, L.; Nieber, J.L. Assessment of Stream Restoration for Reduction of Sediment in a Large Agricultural Watershed. J. Water Resour. Plan. Manag. 2018, 144, 04018032. [Google Scholar] [CrossRef]
- Gran, K.B.; Finnegan, N.; Johnson, A.L.; Belmont, P.; Wittkop, C.; Rittenour, T. Landscape evolution, valley excavation, and terrace development following abrupt postglacial base level fall. Geol. Soc. Am. Bull. 2013, 125, 1851–1864. [Google Scholar] [CrossRef]
- Cho, S.J. Development of Data-Driven, Reduced-Complexity Watershed Simulation Models to Address Agricultural Non-Point Source Sediment Pollution in Southern Minnesota. Ph.D. Thesis, John Hopkins University, Baltimore, MD, USA, 2017. [Google Scholar]
- Vaughan, A.A.; Belmont, P.; Hawkins, C.P.; Wilcock, P. Near-Channel Versus Watershed Controls on Sediment Rating Curves. J. Geophys. Res. Earth Surf. 2017, 122, 1901–1923. [Google Scholar] [CrossRef]
- Minnesota Pollution Control Agency Minnesota’s Impaired Waters List. 2014. Available online: http://www.pca.state.mn.us/index.php/water/water-types-and-programs/minnesotas-impaired-waters-and-tmdls/impaired-waters-list.html (accessed on 4 August 2018).
- Matsch, C.L. River Warren, the southern outlet to glacial Lake Agassiz. Glacial Lake Agassiz 1983, 26, 231–244. [Google Scholar]
- Thorleifson, L.H. Review of Lake Agassiz history. Sedimentol. Geomorphol. Hist. Cent. Lake Agassiz Basin Geol. Assoc. Can. Field Trip Guideb. B 1996, 2, 55–84. [Google Scholar]
- Fisher, T.G. Chronology of glacial Lake Agassiz meltwater routed to the Gulf of Mexico. Quat. Res. 2003, 59, 271–276. [Google Scholar] [CrossRef]
- Belmont, P. Floodplain width adjustments in response to rapid base level fall and knickpoint migration. Geomorphology 2011, 128, 92–102. [Google Scholar] [CrossRef]
- Gran, K.B.; Belmont, P.; Day, S.S.; Jennings, C.; Johnson, A.; Perg, L.; Wilcock, P.R. Geomorphic evolution of the Le Sueur River, Minnesota, USA, and implications for current sediment loading. Manag. Restor. Fluv. Syst. Broad Hist. Chang. Hum. Impacts: Geol. Soc. Am. Spec. Pap. 2009, 451, 119–130. [Google Scholar] [CrossRef]
- Sekely, A.C.; Mulla, D.J.; Bauer, D.W. Streambank slumping and its contribution to the phosphorus and suspended sediment loads of the Blue Earth River, Minnesota. J. Soil Water Conserv. 2002, 57, 243–250. [Google Scholar]
- Kelly, S.A.; Belmont, P. High Resolution Monitoring of River Bluff Erosion Reveals Failure Mechanisms and Geomorphically Effective Flows. Water 2018, 10, 394. [Google Scholar] [CrossRef]
- Day, S.S.; Gran, K.B.; Belmont, P.; Wawrzyniec, T. Measuring bluff erosion part 2: Pairing aerial photographs and terrestrial laser scanning to create a watershed scale sediment budget. Earth Surf. Process. Landf. 2013, 38, 1068–1082. [Google Scholar] [CrossRef]
- Schaffrath, K.R.; Belmont, P.; Wheaton, J.M. Landscape-scale geomorphic change detection: Quantifying spatially variable uncertainty and circumventing legacy data issues. Geomorphology 2015, 250, 334–348. [Google Scholar] [CrossRef] [Green Version]
- Engstrom, D.R.; Almendinger, J.E.; Wolin, J.A. Historical changes in sediment and phosphorus loading to the upper Mississippi River: Mass-balance reconstructions from the sediments of Lake Pepin. J. Paleolimnol. 2009, 41, 563–588. [Google Scholar] [CrossRef]
- Kelley, D.W.; Nater, E.A. Historical sediment flux from three watersheds into Lake Pepin, Minnesota, USA. J. Environ. Qual. 2000, 29, 561–568. [Google Scholar] [CrossRef]
- Wilcock, P.R. Identifying Sediment Sources in the Minnesota River Basin; Minnesota Pollution Control Agency (MPCA): St. Paul, MN, USA, 2009; Available online: https://www.pca.state.mn.us/sites/default/files/wq-b3-43.pdf (accessed on 4 August 2018).
- Call, B.; Belmont, P.; Schmidt, J.C.; Wilcock, P.R. Changes in Floodplain Inundation under Non-Stationary Hydrology for an Adjustable, Alluvial River Channel. Water Resour. Res. 2017, 53, 3811–3834. [Google Scholar] [CrossRef]
- Foufoula-Georgiou, E.; Takbiri, Z.; Czuba, J.A.; Schwenk, J. The change of nature and the nature of change in agricultural landscapes: Hydrologic regime shifts modulate ecological transitions. Water Resour. Res. 2015, 51, 6649–6671. [Google Scholar] [CrossRef] [Green Version]
- Belmont, P.; Stevens, J.R.; Czuba, J.A.; Kumarasamy, K.; Kelly, S.A. Comment on “Climate and agricultural land use change impacts on streamflow in the upper midwestern United States,” by Satish C. Gupta et al. Water Resour. Res. 2016, 52, 7523–7528. [Google Scholar] [CrossRef] [Green Version]
- Foufoula-Georgiou, E.; Belmont, P.; Wilcock, P.; Gran, K.; Finlay, J.C.; Kumar, P.; Kumar, P.; Czuba, J.A.; Schwenk, J.; Takbiri, Z. Comment on “Climate and agricultural land use change impacts on streamflow in the upper midwestern United States” by Satish C. Gupta et al. Water Resour. Res. 2016, 52, 7536–7539. [Google Scholar] [CrossRef] [Green Version]
- Jennings, C.E. Geomorphology and Reconnaissance Surficial Geology of the Le Sueur River Watershed (Blue Earth, Waseca, Faribault, and Freeborn Counties in South-Central MN). Map Scale. 2010. Available online: http://hdl.handle.net/11299/98055 (accessed on 4 August 2018).
- Gran, K.; Belmont, P.; Day, S.; Jennings, C.; Lauer, J.W.; Viparelli, E.; Wilcock, P.; Parker, G. An Integrated Sediment Budget for the Le Sueur River Basin; Minnesota Pollution Control Agency (MPCA): St. Paul, MN, USA, 2011; Available online: https://pdfs.semanticscholar.org/461d/fda9ed443d3450b337ceb0c9903d73adf1cd.pdf (accessed on 4 August 2018).
- Hey, D.L.; Philippi, N.S. Flood reduction through wetland restoration: The Upper Mississippi River Basin as a case history. Restor. Ecol. 1995, 3, 4–17. [Google Scholar] [CrossRef]
- Zedler, J.B. Wetlands at your service: Reducing impacts of agriculture at the watershed scale. Front. Ecol. Environ. 2003, 1, 65–72. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Day, J.W., Jr. Restoration of wetlands in the Mississippi–Ohio–Missouri (MOM) River Basin: Experience and needed research. Ecol. Eng. 2006, 26, 55–69. [Google Scholar] [CrossRef]
- Javaheri, A.; Babbar-Sebens, M. On comparison of peak flow reductions, flood inundation maps, and velocity maps in evaluating effects of restored wetlands on channel flooding. Ecol. Eng. 2014, 73, 132–145. [Google Scholar] [CrossRef]
- Brody, S.D.; Highfield, W.E.; Ryu, H.C.; Spanel-Weber, L. Examining the relationship between wetland alteration and watershed flooding in Texas and Florida. Nat. Hazards 2007, 40, 413–428. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Turner, R.E.; Scavia, D. Beyond Science into Policy: Gulf of Mexico Hypoxia and the Mississippi River: Nutrient policy development for the Mississippi River watershed reflects the accumulated scientific evidence that the increase in nitrogen loading is the primary factor in the worsening of hypoxia in the northern Gulf of Mexico. AIBS Bull. 2002, 52, 129–142. [Google Scholar] [CrossRef]
- Hansen, A.T.; Dolph, C.L.; Foufoula-Georgiou, E.; Finlay, J.C. Contribution of wetlands to nitrate removal at the watershed scale. Nat. Geosci. 2018, 11, 127. [Google Scholar] [CrossRef]
- CARD & ISU of Science and Technology. SWAT Literature Database for Peer-Reviewed Journal Articles. 2016. Available online: https://www.card.iastate.edu/swat_articles/ (accessed on 12 December 2016).
- Babbar-Sebens, M.; Barr, R.C.; Tedesco, L.P.; Anderson, M. Spatial identification and optimization of upland wetlands in agricultural watersheds. Ecol. Eng. 2013, 52, 130–142. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Kumarasamy, K.; Belmont, P. Calibration parameter selection and watershed hydrology model evaluation in time and frequency domains. Water 2018, 10, 710. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Saleh, A.; Arnold, J.G.; Gassman, P.W.A.; Hauck, L.M.; Rosenthal, W.D.; Williams, J.R.; McFarland, A.M.S. Application of SWAT for the upper North Bosque River watershed. Trans. ASAE 2000, 43, 1077. [Google Scholar] [CrossRef]
- Han, W.; Yang, Z.; Di, L.; Yue, P. A geospatial web service approach for creating on-demand cropland data layer thematic maps. Trans. ASAE 2014, 57, 239–247. [Google Scholar]
- Soil Survey Staff; Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Databases for Blue Earth, Faribault, Freeborn, Le Sueur, Steele, and Waseca Counties, MN. 2015. Available online: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx (accessed on 28 April 2015).
- PRISM Climate Group. Oregon State University, 2016. Available online: http://prism.oregonstate.edu (accessed on 11 August 2016).
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.Y.; Iredell, M.; et al. The NCEP climate forecast system version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011; Available online: https://swat.tamu.edu/media/99192/swat2009-theory.pdf (accessed on 4 August 2018).
- Wang, X.; Yang, W.; Melesse, A.M. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 2008, 51, 55–72. [Google Scholar] [CrossRef]
- Wang, X.; Shang, S.; Qu, Z.; Liu, T.; Melesse, A.M.; Yang, W. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale. J. Environ. Manag. 2010, 91, 1511–1525. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Martinez, E.; Nejadhashemi, A.P.; Woznicki, S.A.; Love, B.J. Modeling the hydrological significance of wetland restoration scenarios. J. Environ. Manag. 2014, 133, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Bevis, M. Sediment Budgets Indicate Pleistocene Base Level Fall Drives Erosion in Minnesota’s Greater Blue Earth River Basin. Master’s Thesis, University of Minnesota Duluth, Duluth, MN, USA, 2015. [Google Scholar]
- Yang, W.; Wang, X.; Liu, Y.; Gabor, S.; Boychuk, L.; Badiou, P. Simulated environmental effects of wetland restoration scenarios in a typical Canadian prairie watershed. Wetl. Ecol. Manag. 2010, 18, 269–279. [Google Scholar] [CrossRef]
- Schilling, K.E.; Helmers, M. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed. J. Hydrol. 2008, 349, 291–301. [Google Scholar] [CrossRef]
- Lewandowski, A.; Everett, L.; Lenhart, C.; Terry, K.; Origer, M.; Moore, R. Fields to Streams: Managing Water in Rural Landscapes. Part One, Water Shaping the Landscape. Water Resources Center, University of Minnesota Extension. University of Minnesota Digital Conservancy. 2015. Available online: http://hdl.handle.net/11299/177290 (accessed on 4 August 2018).
- Kovacic, D.A.; David, M.B.; Gentry, L.E.; Starks, K.M.; Cooke, R.A. Effectiveness of constructed wetlands in reducing nitrogen and phosphorus export from agricultural tile drainage. J. Environ. Qual. 2000, 29, 1262–1274. [Google Scholar] [CrossRef]
- Poe, A.C.; Piehler, M.F.; Thompson, S.P.; Paerl, H.W. Denitrification in a constructed wetland receiving agricultural runoff. Wetlands 2003, 23, 817–826. [Google Scholar] [CrossRef]
- Wilcock, P.; Cho, S.J.; Gran, K.; Hobbs, B.; Belmont, P.; Bevis, M.; Heitkamp, B.; Marr, J.; Mielke, S.; Mitchell, N.; et al. CSSR: Collaborative for Sediment Source Reduction Greater Blue Earth River Basin; Minnesota Pollution Control Agency (MPCA): St. Paul, MN, USA, 2016; Available online: http://www.bwsr.state.mn.us/drainage/dwg/resources/CSSR_Final_Report.pdf (accessed on 4 August 2018).
Gauge | Number | Cal. | Val. | Cal. | Val. | Cal. | Val. |
---|---|---|---|---|---|---|---|
NSE | R2 | PBIAS | |||||
Le Sueur River at Rapidan, CR8 | 1 | 0.57 | 0.75 | 0.57 | 0.76 | −1.97 | 1.40 |
Big Cobb River near Beauford, CR16 | 2 | 0.83 | 0.84 | 0.84 | 0.85 | 3.90 | 5.03 |
Maple River near Rapidan, CR35 | 3 | 0.72 | 0.69 | 0.73 | 0.7 | −21.66 | 7.85 |
Le Sueur River at St. Clair, CSAH28 | 4 | 0.67 | 0.72 | 0.67 | 0.74 | 0.25 | 7.44 |
Little Cobb River near Beauford | 5 | 0.74 | 0.79 | 0.76 | 0.79 | 9.90 | −2.55 |
Maple River near Sterling Center, CR18 | 6 | 0.72 | 0.73 | 0.7 | 0.75 | 8.76 | 17.70 |
Little Beauford Ditch | 7 | 0.54 | 0.5 | 0.55 | 0.62 | 17.72 | −23.69 |
Le Sueur River near Rapidan, MN66 | 8 | 0.59 | 0.73 | 0.6 | 0.74 | 15.32 | 7.67 |
Parameter | Description | SWAT Default Value | Calibrated Value |
---|---|---|---|
.bsn File—General Watershed Description File | |||
SFTMP | Snowfall temperature (°C) | 1 | 2.2 |
SMTMP | Snow melt base temperature (°C) | 0.5 | 0.5 |
SMFMX | Melt factor for snow on 21 June (mm H2O/°C-day) | 4.5 | 4 |
SMFMN | Melt factor for snow on 21 December (mm H2O/°C-day) | 4.5 | 2 |
TIMP | Snow pack temperature lag factor | 1 | 0.815 |
SNOCOVMX | Minimum snow water content that corresponds to 100% snow over (mm H2O) | 1 | 10 |
SNO50COV | Fraction of snow volume represented by SNOCOVMX that corresponds to 50% snow cover | 0.5 | 0.5 |
IPET | Potential evapotranspiration (PET) method | Penman/Monteith | Hargreaves |
ESCO | Soil evaporation compensation factor | 0.95 | 0.98 |
EPCO | Plant uptake compensation factor | 1 | 0.005 |
ICN | Daily curve number calculation method | Soil moisture method | Plant ET method |
CNCOEF | Plant evapotranspiration (ET) curve number coefficient | 1 | 0.7 |
CN_FROZ | Frozen soil infiltration factor | 0.000862, ‘inactive’ | 0.002, ‘active’ |
ITDRN | Tile drain equation flag | 0 | 1 |
IWTDN | Water table algorithm flag | 0 | 1 |
.gw File—Groundwater Input File | |||
GW_DELAY | Groundwater delay time (days) | 31 | 42.63 |
ALPHA_BF | Baseflow alpha factor (1/days) | 0.048 | 0.83 |
GWQMN | Threshold depth of water in the shallow aquifer required for return flow to occur (mm H20) | 1000 | 1359.61 |
GW_REVAP | Groundwater revap coefficient | 0.02 | 0.047 |
.sub file—Sub-Basin General Input File | |||
CH_N1 | Mannings ‘n’ value for tributary channel | 0.014 | 0.04 |
CH_K1 | Effective hydraulic conductivity in tributary channel alluvium (mm/h) | 0 | 30.9 |
.rte file—Main Channel Input File | |||
CH_N2 | Mannings ‘n’ value for main channel | 0.014 | 0.037 |
CH_K2 | Effective hydraulic conductivity in main channel alluvium (mm/h) | 0 | 171.3 |
.hru file—HRU General Input File | |||
DEP_IMP | Depth to impervious layer in soil profile (mm) | NA | 2237.17 |
RE | Effective radius of drains (mm) | 50 | 25 |
SDRAIN | Distance between two drains or tile tubes (mm) | NA | NA |
OV_N | Manning’s ‘n’ value for overland flow | 0.14 | 0.03 |
Source | Mud Input (Mg/yr) between the Upper and Lower Gauges | ||
---|---|---|---|
Le Sueur | Cobb | Maple | |
Sediment Budget 2000–2010, v2 1 | 2.85 × 104 | 2.76 × 104 | 2.34 × 104 |
Sediment Budget 2000–2010, v1 1 | 2.47 × 104 | 2.44 × 104 | 2.08 × 104 |
15-min Flows 2006–2011, Gauged 2 | 2.34 × 104 | 2.46 × 104 | 3.04 × 104 |
Daily Flows 2005–2009, Gauged 2 | 6.05 × 103 | 4.97 × 103 | 6.41 × 103 |
Daily Flows 2005–2009, SWAT 3 | 6.46 × 103 | 7.63 × 103 | 7.24 × 103 |
Daily Flows 1985–2009, SWAT 3 | 6.58 × 103 | 7.60 × 103 | 7.44 × 103 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitchell, N.; Kumarasamy, K.; Cho, S.J.; Belmont, P.; Dalzell, B.; Gran, K. Reducing High Flows and Sediment Loading through Increased Water Storage in an Agricultural Watershed of the Upper Midwest, USA. Water 2018, 10, 1053. https://doi.org/10.3390/w10081053
Mitchell N, Kumarasamy K, Cho SJ, Belmont P, Dalzell B, Gran K. Reducing High Flows and Sediment Loading through Increased Water Storage in an Agricultural Watershed of the Upper Midwest, USA. Water. 2018; 10(8):1053. https://doi.org/10.3390/w10081053
Chicago/Turabian StyleMitchell, Nate, Karthik Kumarasamy, Se Jong Cho, Patrick Belmont, Brent Dalzell, and Karen Gran. 2018. "Reducing High Flows and Sediment Loading through Increased Water Storage in an Agricultural Watershed of the Upper Midwest, USA" Water 10, no. 8: 1053. https://doi.org/10.3390/w10081053
APA StyleMitchell, N., Kumarasamy, K., Cho, S. J., Belmont, P., Dalzell, B., & Gran, K. (2018). Reducing High Flows and Sediment Loading through Increased Water Storage in an Agricultural Watershed of the Upper Midwest, USA. Water, 10(8), 1053. https://doi.org/10.3390/w10081053