Quantification Assessment of Extraneous Water Infiltration and Inflow by Analysis of the Thermal Behavior of the Sewer Network
Abstract
:1. Introduction
2. Methodology
2.1. Distributed Temperature Sensing (DTS) Technology
- L: the laser light reflection location;
- ΔT: laser light reflection duration from the initial time that laser pulses into the cable;
- c: the laser light speed in the fiber (~2/3 of the light speed in vacuum);
- n: the reflective index of optical fiber.
2.2. Infiltration and Inflow Quantification
2.3. Case System Description
2.4. Experimental Setup
2.5. Precipitation and Flow Measurement
2.6. Infiltration and Inflow (I/I) Temperature
3. Results and Discussion
3.1. Artificial Discharge I/I Assessment
3.2. Low Infiltration Artificial Discharge
3.3. Rainfall-Derived I/I Assessment
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Beheshti, M.; Sægrov, S. Sustainability assessment in strategic management of wastewater transport system: A case study in Trondheim, Norway. Urban Water J. 2018, 15, 1–8. [Google Scholar] [CrossRef]
- Rehan, R.; Knight, M.A.; Unger, A.J.A.; Haas, C.T. Financially sustainable management strategies for urban wastewater collection infrastructure—Development of a system dynamics model. Tunn. Undergr. Space Technol. 2014, 39, 116–129. [Google Scholar] [CrossRef]
- Beheshti, M.; Sægrov, S.; Ugarelli, R. Infiltration/Inflow Assessment and Detection in Urban Sewer System. Vann 2015, 1, 24–34. [Google Scholar]
- Ellis, B.; Bertrand-Krajewski, J.L. Assessing Infiltration and Exfiltration on the Performance of Urban Sewer Systems (APUSS); IWA Publishing: London, UK, 2010; ISBN 9781843391494. [Google Scholar]
- Zhang, M.; Liu, Y.; Cheng, X.; Zhu, D.Z.; Shi, H.; Yuan, Z. Quantifying rainfall-derived inflow and infiltration in sanitary sewer systems based on conductivity monitoring. Water Res. 2018, 558, 174–183. [Google Scholar] [CrossRef]
- Schilperoort, R.; Hoppe, H.; De Haan, C.; Langeveld, J. Searching for storm water inflows in foul sewers using fibre-optic distributed temperature sensing. Water Sci. Technol. 2013, 68, 1723–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langeveld, J.G.; De Haan, C.; Klootwijk, M.; Schilperoort, R.P.S. Monitoring the performance of a storm water separating manifold with distributed temperature sensing. Water Sci. Technol. 2012, 66, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Hoes, O.A.C.; Schilperoort, R.P.S.; Luxemburg, W.M.J.; Clemens, F.H.L.R.; van de Giesen, N.C. Locating illicit connections in storm water sewers using fiber-optic distributed temperature sensing. Water Res. 2009, 43, 5187–5197. [Google Scholar] [CrossRef] [PubMed]
- Staufer, P.; Scheidegger, A.; Rieckermann, J. Assessing the performance of sewer rehabilitation on the reduction of infiltration and inflow. Water Res. 2012, 46, 5185–5196. [Google Scholar] [CrossRef] [PubMed]
- Kracht, O.; Gresch, M.; Gujer, W. A stable isotope approach for the quantification of sewer infiltration. Environ. Sci. Technol. 2007, 41, 5839–5845. [Google Scholar] [CrossRef] [PubMed]
- Kracht, O.; Gujer, W. Quantification of infiltration into sewers based on time series of pollutant loads. Water Sci. Technol. 2005, 52, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Dakin, J.P.; Pratt, D.J.; Bibby, G.B.; Ross, J.N. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electron. Lett. 1985, 21, 569–570. [Google Scholar] [CrossRef]
- Tyler, S.W.; Selker, J.S.; Hausner, M.B.; Hatch, C.E.; Torgersen, T.; Thodal, C.E.; Schladow, S.G. Environmental temperature sensing using Raman spectra DTS fiber-optic methods. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- De Jong, S.A.P.; Slingerland, J.D.; van de Giesen, N.C. Fiber optic distributed temperature sensing for the determination of air temperature. Atmos. Meas. Tech. 2015, 8, 335–339. [Google Scholar] [CrossRef] [Green Version]
- Johansson, S. Seepage Monitoring in Embankment Dams; Royal Institute of Technology: Stockholm, Sweden, 1997; ISBN 91-7170-792-1. [Google Scholar]
- Vosse, M.; Schilperoort, R.; De Haan, C.; Nienhuis, J.; Tirion, M.; Langeveld, J. Processing of DTS monitoring results: Automated detection of illicit connections. Water Pract. Technol. 2013, 8, 375–381. [Google Scholar] [CrossRef]
- Selker, J.S.; Thévenaz, L.; Huwald, H.; Mallet, A.; Luxemburg, W.; van de Giesen, N.; Stejskal, M.; Zeman, J.; Westhoff, M.; Parlange, M.B. Distributed fiber-optic temperature sensing for hydrologic systems. Water Resour. Res. 2006, 42, W12202. [Google Scholar] [CrossRef]
- Savenije, H.G.H.; Westhoff, M.C.; Gooseff, M.N.; Bogaard, T.A. Quantifying hyporheic exchange at high spatial resolution using natural temperature variations along a first-order stream. Water Resour. Res. 2011, 47, W10508. [Google Scholar]
- Westhoff, M.C.; Savenije, H.H.G.; Luxemburg, W.M.J.; Stelling, S.G.; van de Giesen, N.C.; Selker, J.S.; Pfister, L.; Uhlenbrook, S. A distributed stream temperature model using high resolution temperature observations. Hydrol. Earth Syst. Sci. 2007, 11, 1469–1480. [Google Scholar] [CrossRef] [Green Version]
- Vercauteren, N.; Huwald, H.; Bou-Zeid, E.; Selker, J.S.; Lemmin, U.; Parlange, M.B.; Lunati, I. Evolution of superficial lake water temperature profile under diurnal radiative forcing. Water Resour. Res. 2011, 47, W09522. [Google Scholar] [CrossRef]
- Lowry, C.S.; Walker, J.F.; Hunt, R.J.; Anderson, M.P. Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor. Water Resour. Res. 2007, 43, W10408. [Google Scholar] [CrossRef]
- Mamer, E.A.; Lowry, C.S. Locating and quantifying spatially distributed groundwater-surface water interactions using temperature signals with paired fiber-optic cables. Water Resour. Res. 2013, 49, 7670–7680. [Google Scholar] [CrossRef]
- Henderson, R.D.; Day-Lewis, F.D.; Harvey, C.F. Investigation of aquifer-estuary interaction using wavelet analysis of fiber-optic temperature data. Geophys. Res. Lett. 2009, 36, L06403. [Google Scholar] [CrossRef]
- Schilperoort, R.P.S.; Clemens, F.H.L.R. Fibre-optic distributed temperature sensing in combined sewer systems. Water Sci. Technol. 2009, 60, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Pazhepurackel, V. Fremdwasserbestimmung in Kanalisationen Mittels Faseroptischer Temperaturmessungen. (External Water Determination in Sewer Systems by Fiber-Optic Temperature Measurements). Master’s Thesis, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland, 2009. [Google Scholar]
- Haan de, C.J.; Klootwijk, M.; Schilperoort, R.P.S.; Langeveld, J.G. Locating Illicit Connections with DTS: Classification of Findings. In Proceedings of the 12th International Conference on Urban Drainage, Porto Alegre, Brazil, 11–16 September 2011. [Google Scholar]
- Schilperoort, R.P.S. Monitoring As a Tool for the Assessment of Wastewater Quality Dynamics. Ph.D. Thesis, Technische Universiteit Delft (TU Delft), Water Management Academic Press, Delft, The Netherlands, 17 June 2011. [Google Scholar]
- Zhou, Y.H.; Zhou, H.W.; Zhao, C.J.; Guo, H.M.; Hu, C. Feedback Design of Temperature Control Measures for Concrete Dams Based on Real-time Temperature Monitoring and Simulation of Construction Process. In Proceedings of the 4th APG Symposium and 9th EADC on Innovative Technologies For Dams And Reservoirs Toward the Future Generations, Sapporo, Japan, 26–30 Septmeber 2016; pp. 97–102. [Google Scholar]
- Lopez-Higuera, J.M. Handbook of Optical Fibre Sensing Technology; John Wiley & Sons Ltd.: West Sussex, UK, 2002; ISBN 978-0-471-82053-6. [Google Scholar]
- Stefan, H.G.; Preud’homme, E.B. Stream temperature estimation from air temperature. JAWRA J. Am. Water Resour. Assoc. 1993, 29, 27–45. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Luo, Y.; Stewart, I.T.; Maurer, E.P. Development and application of a hydroclimatological stream temperature model within the Soil and Water Assessment Tool. Water Resour. Res. 2012, 48, 1–16. [Google Scholar] [CrossRef]
- Mohseni, O.; Stefan, H.G. Stream temperature/air temperature relationship: A physical interpretation. J. Hydrol. 1999, 218, 128–141. [Google Scholar] [CrossRef]
- Webb, B.W.; Hannah, D.M.; Moore, R.D.; Brown, L.E.; Nobilis, F. Recent advances in stream and river temperature research. Hydrol. Process. 2008, 22, 902–918. [Google Scholar] [CrossRef]
- Kobayashi, D. Separation of the snowmelt hydrograph by stream temperatures. J. Hydrol. 1984, 76, 155–162. [Google Scholar] [CrossRef]
- Todd, D.K. Ground-Water Hydrology, 2nd ed.; John Wiley: Hoboken, NY, USA, 1980; ISBN 9780471876168. [Google Scholar]
- Larrarte, F.; Bardiaux, J.B.; Battaglia, P.; Joannis, C. Acoustic Doppler flow-meters: A proposal to characterize their technical parameters. Flow Meas. Instrum. 2008, 19, 261–267. [Google Scholar] [CrossRef]
Date | Test Number | Test Location (m) | Time (hh:mm) | Temperature (°C) | Discharge (L/s) | Inflow Share (%) | |
---|---|---|---|---|---|---|---|
Start | End | ||||||
28 Aug. 2015 | 1 | 1727 | 09:42 | 09:47 | 34 | 0.079 | 5.8% |
28 Aug. 2015 | 2 | 1727 | 09:53 | 09:59 | 33 | 0.13 | 9.8% |
28 Aug. 2015 | 3 | 1827 | 10:24 | 10:28 | 31 | 0.188 | 26% |
28 Aug. 2015 | 4 | 1827 | 10:35 | 10:40 | 32 | 0.356 | 51.8% |
28 Aug. 2015 | 5 | 1827 | 11:49 | 11:54 | 20 | 0.060 | 4.7% |
28 Aug. 2015 | 6 | 1827 | 11:58 | 12:02 | 20 | 0.338 | 61.3% |
28 Aug. 2015 | 7 | 1827 | 12:05 | 12:08 | 20 | 1.69 | 389% |
28 Aug. 2015 | 8 | 1827 | 12:13 | 12:17 | 20 | 0.18 | 12.6% |
28 Aug. 2015 | 9 | 1727 | 12:30 | 12:32 | 20 | 0.46 | 7.18% |
28 Aug. 2015 | 10 | 1727 | 12:34 | 12:39 | 20 | 0.208 | 12.13% |
28 Aug. 2015 | 11 | 1727 | 12:42 | 12:45 | 20 | 0.41 | 90.2% |
28 Aug. 2015 | 12 | 1727 | 12:47 | 12:53 | 20 | 0.05 | 4.47% |
28 Aug. 2015 | 13 | 1727 | 12:53 | 12:58 | 20 | 0.09 | 5.67% |
23 Oct. 2015 | 14 | 1727 | 08:35 | 11:55 | 13 | 0.07 | 9.27% |
23 Oct. 2015 | 15 | 1727 | 12:25 | 13:05 | 11 | 0.067 | 5.76% |
23 Oct. 2015 | 16 | 1727 | 13:05 | 13:25 | 11 | 0.056 | 18.5% |
23 Oct. 2015 | 17 | 1727 | 13:25 | 15:38 | 11 | 0.059 | 12.6% |
23 Oct. 2015 | 18 | 1827 | 13:42 | 13:48 | 11 | 0.0016 | 0.47% |
6 Nov. 2015 | 19 | 1727 | 08:47 | 12:10 | 1 | 0.056 | 8.18% |
6 Nov. 2015 | 20 | 1727 | 12:15 | 14:30 | 9.5 | 0.056 | 103% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beheshti, M.; Sægrov, S. Quantification Assessment of Extraneous Water Infiltration and Inflow by Analysis of the Thermal Behavior of the Sewer Network. Water 2018, 10, 1070. https://doi.org/10.3390/w10081070
Beheshti M, Sægrov S. Quantification Assessment of Extraneous Water Infiltration and Inflow by Analysis of the Thermal Behavior of the Sewer Network. Water. 2018; 10(8):1070. https://doi.org/10.3390/w10081070
Chicago/Turabian StyleBeheshti, Maryam, and Sveinung Sægrov. 2018. "Quantification Assessment of Extraneous Water Infiltration and Inflow by Analysis of the Thermal Behavior of the Sewer Network" Water 10, no. 8: 1070. https://doi.org/10.3390/w10081070
APA StyleBeheshti, M., & Sægrov, S. (2018). Quantification Assessment of Extraneous Water Infiltration and Inflow by Analysis of the Thermal Behavior of the Sewer Network. Water, 10(8), 1070. https://doi.org/10.3390/w10081070