Laboratory Studies on Nearshore Density-Driven Exchange Flow over a Partly Vegetated Slope
Abstract
:1. Introduction
2. Mathematical Formulation
3. Experimental Methods
4. Results
4.1. Nature of Density-Driven Exchange Flows
4.2. Density-Driven Exchange Flow Patterns and Current Head Profiles
4.3. Current Thickness of Density-Driven Exchange Flows
5. Discussions
5.1. Froude Numbers of Density-Driven Exchange Flows
5.2. Intrusion Length and Volume Discharge of Density-Driven Exchange Flows
- (a)
- A model canopy in shallows:
- (b)
- A model canopy in deep regions:
5.3. Effects of Drag-Coefficient on Density-Driven Exchange Flows
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- James, W.F.; Barko, J.W. Estimation of phosphorus exchange between littoral and pelagic zones during nighttime convection circulation. Limnol. Oceanogr. 1990, 36, 179–187. [Google Scholar] [CrossRef]
- MacIntyre, S.; Romero, J.R.; Kling, G.W. Spatial-temporal variability in surface layer deepening and lateral advection in an embayment of Lake Victoria, East Africa. Limnol. Oceanogr. 2002, 47, 657–671. [Google Scholar] [CrossRef]
- Woodward, B.L.; Marti, C.L.; Imberger, J.; Hipsey, M.R.; Oldham, C.E. Wind and buoyancy driven horizontal exchange in shallow embayments of a tropical reservoir: Lake Argyle, Western Australia. Limnol. Oceanogr. 2017, 62, 1636–1657. [Google Scholar] [CrossRef]
- Monismith, S.B.; Imberger, J.; Morison, M.L. Convective motion in the sidearm of a small reservoir. Limnol. Oceanogr. 1990, 35, 1676–1702. [Google Scholar] [CrossRef]
- Zhang, X.; Nepf, H.M. Thermally-driven exchange flow between open water and an aquatic canopy. J. Fluid Mech. 2009, 632, 227–243. [Google Scholar] [CrossRef]
- Coates, M.; Patterson, J.C. Unsteady natural convection in a cavity with non-uniform absorption of radiation. J. Fluid Mech. 1993, 256, 133–161. [Google Scholar] [CrossRef]
- Farrow, D.E.; Patterson, J.C. On the response of a reservoir sidearm to diurnal heating and cooling. J. Fluid Mech. 1993, 246, 143–161. [Google Scholar] [CrossRef]
- Tanino, Y.; Nepf, H.M.; Kulis, P.S. Gravity currents in aquatic canopies. Water Resour. Res. 2005, 41, W12402. [Google Scholar] [CrossRef]
- Adams, E.E.; Wells, S.A. Field measurements on side arms of Lake Anna, Va. J. Hydraul. Eng. 1984, 110, 773–793. [Google Scholar] [CrossRef]
- Sturman, J.J.; Ivey, G.N. Unsteady convective exchange flows in cavities. J. Fluid Mech. 1998, 386, 127–153. [Google Scholar] [CrossRef]
- Lei, C.; Patterson, J.C. Natural convection in a reservoir sidearm subject to solar radiation: Experimental observations. Exp. Fluids 2002, 32, 590–599. [Google Scholar] [CrossRef]
- Horsch, G.M.; Stefan, H.G. Convective circulation in littoral water due to surface cooling. Limnol. Oceanogr. 1988, 33, 1068–1083. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Patterson, J.C. Natural convection induced by diurnal heating and cooling in a reservoir with slowly varying topography. JSME Int. J. Ser. B Fluids Therm. Eng. 2006, 49, 605–615. [Google Scholar] [CrossRef]
- Chimney, M.; Wenkert, L.; Pietro, K. Patterns of vertical stratification in a subtropical constructed wetland in south Florida (USA). Ecol. Eng. 2006, 27, 322–330. [Google Scholar] [CrossRef]
- Lövstedt, C.; Bengtsson, L. Density-driven current between reed belts and open water in a shallow lake. Water Resour. Res. 2008, 44, W10413. [Google Scholar] [CrossRef]
- Pokorný, J.; Kvet, J. Aquatic plants and lake ecosystem. In the Lakes Handbook; Blackwell Science Ltd.: Malden, MA, USA, 2004. [Google Scholar]
- Lightbody, A.F.; Avener, M.; Nepf, H.M. Observations of short-circuiting flow paths within a constructed treatment wetland in Augusta, Georgia, USA. Limnol. Oceanogr. 2007, 53, 1040–1053. [Google Scholar] [CrossRef]
- Coates, M.; Ferris, J. The radiatively driven natural and convection beneath a floating plant layer. Limnol. Oceanogr. 1994, 39, 1186–1194. [Google Scholar] [CrossRef]
- Zhang, X.; Nepf, H.M. Density-driven exchange flow between open water and an aquatic canopy. Water Resour. Res. 2008, 44, W08417. [Google Scholar] [CrossRef]
- Tsakiri, M.; Prinos, P.; Koftis, T. Numerical simulation of turbulent exchange flow in aquatic canopies. J. Hydraul. Res. 2016, 54, 131–144. [Google Scholar] [CrossRef]
- Wietzel, R.G. Lake and river ecosystems. Limnology 2001, 37, 490–525. [Google Scholar]
- Lin, Y.T.; Wu, C.H. The role of rooted emergent vegetation on periodically thermal-driven flow over a sloping bottom. Environ. Fluid Mech. 2014, 14, 1303–1334. [Google Scholar] [CrossRef]
- Lin, Y.T.; Wu, C.H. Effects of a sharp change of emergent vegetation distributions on thermally driven flow over a slope. Environ. Fluid Mech. 2015, 15, 771–791. [Google Scholar] [CrossRef]
- Ho, H.C.; Lin, Y.T. Gravity currents over a rigid and emergent vegetated slope. Adv. Water Resour. 2015, 76, 72–80. [Google Scholar] [CrossRef]
- Benjamin, T.B. Gravity currents and related phenomena. J. Fluid Mech. 1968, 31, 209–248. [Google Scholar] [CrossRef]
- Nepf, H.M. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 1999, 35, 479–489. [Google Scholar] [CrossRef] [Green Version]
- Jamali, M.; Zhang, X.; Nepf, H.M. Exchange flow between a canopy and open water. J. Fluid Mech. 2008, 611, 237–254. [Google Scholar] [CrossRef]
- Leonard, L.; Luther, M.E. Flow hydrodynamics in tidal marsh canopies. Limnol. Oceanogr. 1995, 40, 1474–1484. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Zhao, L.; Lin, T.; Hu, P.; Lv, Y.; Ho, H.C.; Lin, Y.T. Hydrodynamics of gravity currents down a ramp in linearly stratified environments. J. Hydraul. Eng. 2017, 143, 04016085. [Google Scholar] [CrossRef]
- Kadlec, R.H. Overland flow in wetlands: vegetation resistance. J. Hydraul. Eng. 1990, 116, 691–706. [Google Scholar] [CrossRef]
- Wilson, R.I.; Friedrich, H.; Stevens, C. Turbulent entrainment in sediment-laden flows interacting with an obstacle. Phys. Fluid 2017, 29, 036603. [Google Scholar] [CrossRef]
- Ilıcak, M. Energetics and mixing efficiency of lock-exchange flow. Ocean Model. 2014, 83, 179–187. [Google Scholar] [CrossRef]
- Hogg, C.A.R.; Dalziel, S.B.; Huppert, H.E.; Imberger, J. Inclined gravity currents filling basins: The influence of Reynolds number on entrainment into gravity currents. Phys. Fluid 2015, 27, 096602. [Google Scholar] [CrossRef] [Green Version]
- Tanino, Y.; Nepf, H.M. Lateral dispersion in random cylinder arrays at high Reynolds number. J. Fluid Mech. 2008, 600, 339–371. [Google Scholar] [CrossRef]
- Nogueira, H.; Adduce, C.; Alves, E.; Franca, M. Analysis of lock-exchange gravity currents over smooth and rough beds. J. Hydraul. Res. 2013, 51, 417–431. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.O.; Dalziel, S.B.; Linden, P.F. Gravity currents produced by lock exchange. J. Fluid Mech. 2004, 521, 1–34. [Google Scholar] [CrossRef]
- Vanatta, C. Experiments on vortex shedding from yawed circular cylinders. AIAA J. 1968, 6, 931–933. [Google Scholar] [CrossRef]
- Shang, J.K.; Stone, H.A.; Smits, A.J. Flow past finite cylinders of constant curvature. J. Fluid Mech. 2018, 837, 896–915. [Google Scholar] [CrossRef]
- Zhou, T.; Razali, S.M.; Zhou, Y.; Chua, L.; Cheng, L. Dependence of the wake on inclination of a stationary cylinder. Exp. Fluid 2009, 46, 1125–1138. [Google Scholar] [CrossRef]
Run | Vegetation Side | |||||||
---|---|---|---|---|---|---|---|---|
1 | 0.075 | 2.1 | 5.6 | No | 0 | No | 314 | N.A. |
2 | 0.075 | 2.1 | 5.4 | Both | 0.021 | 0.5 | 246 | 46 |
3 | 0.075 | 2.1 | 5.6 | Both | 0.042 | 0.5 | 227 | 41 |
4 | 0.075 | 2.1 | 5.4 | Both | 0.069 | 0.5 | 188 | 35 |
5 | 0.075 | 2.1 | 5.5 | Shallow | 0.021 | 0.5 | 292 | N.A. |
6 | 0.075 | 2.1 | 5.3 | Shallow | 0.069 | 0.5 | 230 | N.A. |
7 | 0.075 | 2.1 | 5.4 | Deep | 0.021 | 0.5 | 278 | 52 |
8 | 0.075 | 2.1 | 5.5 | Deep | 0.069 | 0.5 | 276 | 50 |
9 | 0.075 | 4.1 | 5.6 | No | 0 | No | 474 | N.A. |
10 | 0.075 | 4.1 | 5.6 | Both | 0.021 | 0.5 | 427 | 76 |
11 | 0.075 | 4.1 | 5.6 | Both | 0.069 | 0.5 | 358 | 64 |
12 | 0.075 | 4.1 | 5.5 | Shallow | 0.021 | 0.5 | 445 | 81 |
13 | 0.075 | 4.1 | 5.6 | Shallow | 0.069 | 0.5 | 479 | 86 |
14 | 0.075 | 4.1 | 5.4 | Deep | 0.021 | 0.5 | 470 | 87 |
15 | 0.075 | 4.1 | 5.5 | Deep | 0.069 | 0.5 | 445 | 81 |
16 | 0.075 | 7.2 | 5.7 | No | 0 | No | 759 | N.A. |
17 | 0.075 | 7.2 | 5.5 | Both | 0.021 | 0.5 | 674 | 123 |
18 | 0.075 | 7.2 | 5.6 | Both | 0.042 | 0.5 | 652 | 117 |
19 | 0.075 | 7.2 | 5.6 | Both | 0.069 | 0.5 | 638 | 114 |
20 | 0.075 | 7.2 | 5.5 | Shallow | 0.021 | 0.5 | 688 | 125 |
21 | 0.075 | 7.2 | 5.6 | Shallow | 0.069 | 0.5 | 782 | 140 |
22 | 0.075 | 7.2 | 5.6 | Deep | 0.069 | 0.5 | 718 | 128 |
23 | 0.125 | 2.1 | 9.5 | No | 0 | No | 752 | N.A. |
24 | 0.125 | 2.1 | 9.5 | Both | 0.021 | 0.5 | 571 | 60 |
25 | 0.125 | 2.1 | 9.6 | Both | 0.069 | 0.5 | 518 | 54 |
26 | 0.125 | 2.1 | 9.5 | Shallow | 0.021 | 0.5 | 670 | 71 |
27 | 0.125 | 2.1 | 9.5 | Shallow | 0.069 | 0.5 | 727 | 77 |
28 | 0.125 | 2.1 | 9.5 | Deep | 0.021 | 0.5 | 653 | 69 |
29 | 0.125 | 2.1 | 9.7 | Deep | 0.069 | 0.5 | 748 | 77 |
30 | 0.125 | 4.1 | 9.5 | No | 0 | No | 1110 | N.A. |
31 | 0.125 | 4.1 | 9.3 | Both | 0.021 | 0.5 | 1060 | 114 |
32 | 0.125 | 4.1 | 9.5 | Both | 0.069 | 0.5 | 1026 | 108 |
33 | 0.125 | 4.1 | 9.5 | Shallow | 0.069 | 0.5 | 1137 | 120 |
34 | 0.125 | 4.1 | 9.6 | Deep | 0.069 | 0.5 | 1099 | 114 |
35 | 0.125 | 7.2 | 9.6 | No | 0 | No | 1592 | N.A. |
36 | 0.125 | 7.2 | 9.5 | Both | 0.042 | 0.5 | 1382 | 146 |
37 | 0.125 | 7.2 | 9.7 | Both | 0.069 | 0.3 | 1328 | 82 |
38 | 0.125 | 7.2 | 9.5 | Shallow | 0.021 | 0.5 | 1435 | 151 |
39 | 0.125 | 7.2 | 9.5 | Shallow | 0.069 | 0.5 | 1637 | 172 |
40 | 0.125 | 7.2 | 9.5 | Deep | 0.069 | 0.5 | 1553 | 164 |
41 | 0.25 | 2.1 | 19.7 | No | 0 | 0 | 2602 | N.A. |
42 | 0.25 | 2.1 | 19.5 | Both | 0.069 | 0.3 | 2040 | 63 |
43 | 0.25 | 2.1 | 19.5 | Shallow | 0.069 | 0.3 | 2493 | 77 |
44 | 0.25 | 2.1 | 19.5 | Shallow | 0.069 | 0.5 | 2198 | 113 |
45 | 0.25 | 2.1 | 19.7 | Deep | 0.069 | 0.3 | 2107 | 64 |
46 | 0.25 | 4.1 | 19.5 | No | 0 | 0 | 3936 | N.A. |
47 | 0.25 | 4.1 | 19.5 | Shallow | 0.069 | 0.3 | 2942 | 91 |
48 | 0.25 | 4.1 | 19.5 | Shallow | 0.069 | 0.5 | 4019 | 206 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Z.; Ho, H.-C.; Wang, Z.; Lin, Y.-T. Laboratory Studies on Nearshore Density-Driven Exchange Flow over a Partly Vegetated Slope. Water 2018, 10, 1073. https://doi.org/10.3390/w10081073
Gu Z, Ho H-C, Wang Z, Lin Y-T. Laboratory Studies on Nearshore Density-Driven Exchange Flow over a Partly Vegetated Slope. Water. 2018; 10(8):1073. https://doi.org/10.3390/w10081073
Chicago/Turabian StyleGu, Zhenghua, Hao-Che Ho, Zijing Wang, and Ying-Tien Lin. 2018. "Laboratory Studies on Nearshore Density-Driven Exchange Flow over a Partly Vegetated Slope" Water 10, no. 8: 1073. https://doi.org/10.3390/w10081073
APA StyleGu, Z., Ho, H. -C., Wang, Z., & Lin, Y. -T. (2018). Laboratory Studies on Nearshore Density-Driven Exchange Flow over a Partly Vegetated Slope. Water, 10(8), 1073. https://doi.org/10.3390/w10081073