Exploring and Quantifying River Thermal Response to Heatwaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Available Data
2.2. Statistical Analysis
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stefan, H.G.; Preud’homme, E.B. Stream temperature estimation from air temperature. JAWRA J. Am. Water Resour. Assoc. 1993, 29, 27–45. [Google Scholar] [CrossRef]
- Mohseni, O.; Stefan, H. Stream temperature/air temperature relationship: A physical interpretation. J. Hydrol. 1999, 218, 128–141. [Google Scholar] [CrossRef]
- Webb, B.W.; Clack, P.D.; Walling, D.E. Water–air temperature relationships in a Devon river system and the role of flow. Hydrol. Process. 2003, 17, 3069–3084. [Google Scholar] [CrossRef]
- Caissie, D. The thermal regime of rivers: A review. Freshw. Biol. 2006, 51, 1389–1406. [Google Scholar] [CrossRef]
- Kothandaraman, V. Air-water temperature relationship in Illinois River. JAWRA J. Am. Water Resour. Assoc. 1972, 8, 38–45. [Google Scholar] [CrossRef]
- Mohseni, O.; Stefan, H.; Erickson, T. A nonlinear regression model for weekly stream temperatures. Water Resour. Res. 1998, 34, 2685–2692. [Google Scholar] [CrossRef] [Green Version]
- Erickson, T.R.; Stefan, H.G. Linear air/water temperature correlations for streams during open water periods. J. Hydrol. Eng. 2000, 5, 317–321. [Google Scholar] [CrossRef]
- Isaak, D.J.; Luce, C.H.; Rieman, B.E.; Nagel, D.E.; Peterson, E.E.; Horan, D.L.; Parkes, S.; Chandler, G.L. Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network. Ecol. Appl. 2010, 20, 1350–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vliet, M.T.H.; Ludwig, F.; Zwolsman, J.J.G.; Weedon, G.P.; Kabat, P. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Arismendi, I.; Safeeq, M.; Johnson, S.; Dunham, J.; Haggerty, R. Can air temperature be used to project influences of climate change on stream temperature? Environ. Res. Lett. 2014, 9, 084015. [Google Scholar] [CrossRef] [Green Version]
- Toffolon, M.; Piccolroaz, S. A hybrid model for river water temperature as a function of air temperature and discharge. Environ. Res. Lett. 2015, 10, 114011. [Google Scholar] [CrossRef] [Green Version]
- Sohrabi, M.M.; Benjankar, R.; Tonina, D.; Wenger, S.J.; Isaak, D.J. Estimation of daily stream water temperatures with a Bayesian regression approach. Hydrol. Process. 2017, 31, 1719–1733. [Google Scholar] [CrossRef]
- Diffenbaugh, N.; Field, C. Changes in ecologically critical terrestrial climate conditions. Science 2013, 341, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Krasting, J.P.; Broccoli, A.J.; Dixon, K.W.; Lanzante, J.R. Future Changes in Northern Hemisphere Snowfall. J. Clim. 2013, 26, 7813–7828. [Google Scholar] [CrossRef]
- Brown, L.E.; Hannah, D.M.; Milner, A.M. Hydroclimatological influences on water column and streambed thermal dynamics in an alpine river system. J. Hydrol. 2006, 325, 1–20. [Google Scholar] [CrossRef]
- Leach, J.A.; Moore, R.D. Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: Influences of hillslope runoff and transient snow cover. Hydrol. Earth Syst. Sci. 2014, 18, 819–838. [Google Scholar] [CrossRef]
- Lisi, P.J.; Schindler, D.E.; Cline, T.J.; Scheuerell, M.D.; Walsh, P.B. Watershed geomorphology and snowmelt control stream thermal sensitivity to air temperature. Geophys. Res. Lett. 2015, 42, 3380–3388. [Google Scholar] [CrossRef] [Green Version]
- Luce, C.; Staab, B.; Kramer, M.; Wenger, S.; Isaak, D.; McConnell, C. Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest. Water Resour. Res. 2014, 50, 3428–3443. [Google Scholar] [CrossRef] [Green Version]
- Isaak, D.J.; Young, M.K.; Luce, C.H.; Hostetler, S.W.; Wenger, S.J.; Peterson, E.E.; Ver Hoef, J.M.; Groce, M.C.; Horan, D.L.; Nagel, D.E. Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity. Proc. Natl. Acad. Sci. USA 2016, 113, 4374–4379. [Google Scholar] [CrossRef] [PubMed]
- Tague, C.; Farrell, M.; Grant, G.; Lewis, S.; Rey, S. Hydrogeologic controls on summer stream temperatures in the McKenzie River basin, Oregon. Hydrol. Process. 2007, 21, 3288–3300. [Google Scholar] [CrossRef]
- Salmaso, F.; Quadroni, S.; Gentili, G.; Crosa, G. Thermal regime of a highly regulated Italian River (Ticino River) and implications for aquatic communities. J. Limnol. 2017, 76, 23–33. [Google Scholar] [CrossRef]
- Taylor, C.A.; Stefan, H.G. Shallow groundwater temperature response to climate change and urbanization. J. Hydrol. 2009, 375, 601–612. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, Y.; Fu, L.; Liu, Q.; Peng, Q.; Kang, M. Impacts of Land Use on Surface Water Quality in a Subtropical River Basin: A Case Study of the Dongjiang River Basin, Southeastern China. Water 2015, 7, 4427–4445. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.D.; Spittlehouse, D.L.; Story, A. Riparian microclimate and stream temperature response to forest harvesting: A Review. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 813–834. [Google Scholar] [CrossRef]
- Garner, G.; Malcolm, I.A.; Sadler, J.P.; Hannah, D.M. The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics. J. Hydrol. 2017, 553, 471–485. [Google Scholar] [CrossRef]
- Eunsun, E.L.; Edward, J.N. Longitudinal trends in regulated rivers: A review and synthesis within the context of the serial discontinuity concept. Environ. Rev. 2013, 21, 136–148. [Google Scholar]
- Arora, R.; Toffolon, M.; Tockner, K.; Venohr, M. Thermal discontinuities along a lowland river: The importance of urban areas and lakes. J. Hydrol. 2018, 564, 811–823. [Google Scholar] [CrossRef]
- Lowney, C.L. Stream temperature variation in regulated rivers: Evidence for a spatial pattern in daily minimum and maximum magnitudes. Water Resour. Res. 2000, 36, 2947–2955. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.V.; Stanford, J.A. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regul. River 1995, 11, 105–119. [Google Scholar] [CrossRef]
- Olden, J.D.; Naiman, R.J. Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity. Freshw. Biol. 2010, 55, 86–107. [Google Scholar] [CrossRef]
- Cai, H.; Piccolroaz, S.; Huang, J.; Liu, Z.; Liu, F.; Toffolon, M. Quantifying the impact of the Three Gorges Dam on the thermal dynamics of the Yangtze River. Environ. Res. Lett. 2018, 13, 054016. [Google Scholar] [CrossRef] [Green Version]
- Raptis, C.E.; van Vliet, M.T.H.; Pfister, S. Global thermal pollution of rivers from thermoelectric power plants. Environ. Res. Lett. 2016, 11, 104011. [Google Scholar] [CrossRef] [Green Version]
- Hester, E.T.; Doyle, M.W. Human Impacts to River Temperature and Their Effects on Biological Processes: A Quantitative Synthesis. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 571–587. [Google Scholar] [CrossRef]
- Webb, B.W.; Nobilis, F. Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrol. Sci. J. 2007, 52, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Kelleher, C.; Wagener, T.; Gooseff, M.; McGlynn, B.; McGuire, K.; Marshall, L. Investigating controls on the thermal sensitivity of Pennsylvania streams. Hydrol. Process. 2012, 26, 771–785. [Google Scholar] [CrossRef]
- Mayer, T. Controls of summer stream temperature in the Pacific Northwest. J. Hydrol. 2012, 475, 323–335. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Calamita, E.; Majone, B.; Gallice, A.; Siviglia, A.; Toffolon, M. Prediction of river water temperature: A comparison between a new family of hybrid models and statistical approaches. Hydrol. Process. 2016, 30, 3901–3917. [Google Scholar] [CrossRef]
- Woodward, G.; Bonada, N.; Brown, L.; Death, R.; Durance, I.; Gray, C.; Hladyz, S.; Ledger, M.; Milner, A.; Ormerod, S.; et al. The effects of climatic fluctuations and extreme events on running water ecosystems. Philos. Trans. R. Soc. B 2016, 371. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.J. On the Definition of a Heat Wave. J. Appl. Meteorol. 2001, 40, 762–775. [Google Scholar] [CrossRef]
- Hari, R.E.; Livingstone, D.M.; Siber, R.; Burkhardt-Holm, P.; Guettinger, H. Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams. Glob. Chang. Biol. 2006, 12, 10–26. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Likens, G.E.; Jaworski, N.A.; Pace, M.L.; Sides, A.M.; Seekell, D.; Belt, K.T.; Secor, D.H.; Wingate, R.L. Rising stream and river temperatures in the United States. Front. Ecol. Environ. 2010, 8, 461–466. [Google Scholar] [CrossRef]
- Isaak, D.J.; Wollrab, S.; Horan, D.; Chandler, G. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Chang. 2012, 113, 499–524. [Google Scholar] [CrossRef]
- Orr, H.G.; Simpson, G.L.; des Clers, S.; Watts, G.; Hughes, M.; Hannaford, J.; Dunbar, M.J.; Laizé, C.L.R.; Wilby, R.L.; Battarbee, R.W.; et al. Detecting changing river temperatures in England and Wales. Hydrol. Process. 2015, 29, 752–766. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Beniston, M. The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Christidis, N.; Jones, G.S.; Stott, P.A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Chang. 2014, 5, 46–50. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA 2011, 108, 17905–17909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jentsch, A.; Kreyling, J.; Beierkuhnlein, C. A new generation of climate-change experiments: Events, not trends. Front. Ecol. Environ. 2007, 5, 365–374. [Google Scholar] [CrossRef]
- Hegerl, G.C.; Hanlon, H.; Beierkuhnlein, C. Climate science: Elusive extremes. Nat. Geosci. 2011, 4, 142–143. [Google Scholar] [CrossRef]
- O’Gorman, E.J.; Pichler, D.E.; Adams, G.; Benstead, J.P.; Cohen, H.; Craig, N.; Cross, W.F.; Demars, B.O.; Friberg, N.; Gíslason, G.M.; et al. Chapter 2—Impacts of Warming on the Structure and Functioning of Aquatic Communities: Individual- to Ecosystem-Level Responses. In Global Change in Multispecies Systems Part 2; Woodward, G., Jacob, U., O’Gorman, E.J., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 47, pp. 81–176. [Google Scholar]
- Diez, J.M.; D’Antonio, C.M.; Dukes, J.S.; Grosholz, E.D.; Olden, J.D.; Sorte, C.J.; Blumenthal, D.M.; Bradley, B.A.; Early, R.; Ibáñez, I.; et al. Will extreme climatic events facilitate biological invasions? Front. Ecol. Environ. 2012, 10, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Mouthon, J.; Daufresne, M. Effects of the 2003 heatwave and climatic warming on mollusc communities of the Saône: A large lowland river and of its two main tributaries (France). Glob. Chang. Biol. 2006, 12, 441–449. [Google Scholar] [CrossRef]
- Mouthon, J.; Daufresne, M. Resilience of mollusc communities of the River Saone (eastern France) and its two main tributaries after the 2003 heatwave. Freshw. Biol. 2015, 60, 2571–2583. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef] [Green Version]
- de Montmollin, F.; Parodi, A. Température des Cours d’eau Suisses; Mitteilung Nr. 12 der Landeshydrologie und -geologie; The Service Hydrologique et Géologique National: Bern, Switzerland, 1990. [Google Scholar]
- Jakob, A. Temperaturen in Schweizer Fliessgewässern. Gas Wasser Abwasser 2010, 3, 221–231. [Google Scholar]
- Vanzo, D.; Siviglia, A.; Carolli, M.; Zolezzi, G. Characterization of sub-daily thermal regime in alpine rivers: Quantification of alterations induced by hydropeaking. Hydrol. Process. 2016, 30, 1052–1070. [Google Scholar] [CrossRef]
- Livingstone, D.M.; Lotter, A.F.; Kettle, H. Altitude-dependent differences in the primary physical response of mountain lakes to climatic forcing. Limnol. Oceanogr. 2005, 50, 1313–1325. [Google Scholar] [CrossRef] [Green Version]
- Carolli, M.; Vanzo, D.; Siviglia, A.; Zolezzi, G.; Bruno, M.C.; Alfredsen, K. A simple procedure for the assessment of hydropeaking flow alterations applied to several European streams. Aquat. Sci. 2015, 77, 639–653. [Google Scholar] [CrossRef]
- Feng, M.; Zolezzi, G.; Pusch, M. Effects of thermopeaking on the thermal response of alpine river systems to heatwaves. Sci. Total Environ. 2018, 612, 1266–1275. [Google Scholar] [CrossRef] [PubMed]
- Upperman, C.; Parker, J.; Jiang, C.; He, X.; Murtugudde, R.; Sapkota, A. Frequency of Extreme Heat Event as a Surrogate Exposure Metric for Examining the Human Health Effects of Climate Change. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Luterbacher, J.; Dietrich, D.; Xoplaki, E.; Grosjean, M.; Wanner, H. European Seasonal and Annual Temperature Variability, Trends, and Extremes Since 1500. Science 2004, 303, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Sato, M.; Ruedy, R. Perception of climate change. Proc. Natl. Acad. Sci. USA 2012, 109, E2415–E2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schär, C.; Vidale, P.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Ruedy, R.; Glascoe, J.; Sato, M. GISS analysis of surface temperature change. J. Geophys. Res. 1999, 104, 30997–31022. [Google Scholar] [CrossRef] [Green Version]
- Begert, M.; Schlegel, T.; Kirchhofer, W. Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int. J. Climatol. 2005, 25, 65–80. [Google Scholar] [CrossRef]
- Allan, J.D. Stream Ecology, Structure and Function of Running Waters; Springer: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Tetzlaff, D.; Soulsby, C.; Youngson, A.F.; Gibbins, C.; Bacon, P.J.; Malcolm, I.A.; Langan, S. Variability in stream discharge and temperature: A preliminary assessment of the implications for juvenile and spawning Atlantic salmon. Hydrol. Earth Syst. Sci. 2005, 9, 193–208. [Google Scholar] [CrossRef]
- Chezik, K.; Lester, N.; Venturelli, P. Fish growth and degree-days I: Selecting a base temperature for a within-population study. Can. J. Fish. Aquat.Sci. 2014, 71, 47–55. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Healey, N.C.; Lenters, J.D.; Schladow, S.G.; Hook, S.J.; Sahoo, G.B.; Toffolon, M. On the predictability of lake surface temperature using air temperature in a changing climate: A case study for Lake Tahoe (USA). Limnol. Oceanogr. 2018, 63, 243–261. [Google Scholar] [CrossRef]
- Arismendi, I.; Johnson, S.; Dunham, J.; Haggerty, R. Descriptors of natural thermal regimes in streams and their responsiveness to change in the Pacific Northwest of North America. Freshw. Biol. 2013, 58, 880–894. [Google Scholar] [CrossRef]
- Stahl, K.; Moore, R.D. Influence of watershed glacier coverage on summer streamflow in British Columbia, Canada. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.D.; Fleming, S.W.; Menounos, B.; Wheate, R.; Fountain, A.; Stahl, K.; Holm, K.; Jakob, M. Glacier change in western North America: Influences on hydrology, geomorphic hazards and water quality. Hydrol. Process. 2009, 23, 42–61. [Google Scholar] [CrossRef]
- Kobierska, F.; Jonas, T.; Magnusson, J.; Zappa, M.; Bavay, M.; Bosshard, T.; Paul, F.; Bernasconi, S.M. Climate change effects on snow melt and discharge of a partly glacierized watershed in Central Switzerland (SoilTrec Critical Zone Observatory). Appl. Geochem. 2011, 26, S60–S62. [Google Scholar] [CrossRef]
- Neumann, D.W.; Zagona, E.A.; Rajagopalan, B. A Decision Support System to Manage Summer Stream Temperatures1. JAWRA J. Am. Water Resour. Assoc. 2006, 42, 1275–1284. [Google Scholar] [CrossRef]
- Yates, D.; Galbraith, H.; Purkey, D.; Huber-Lee, A.; Sieber, J.; West, J.; Herrod-Julius, S.; Joyce, B. Climate warming, water storage, and Chinook salmon in California’s Sacramento Valley. Clim. Chang. 2008, 91, 335–350. [Google Scholar] [CrossRef]
- Null, S.; Ligare, S.; Viers, J. A Method to Consider Whether Dams Mitigate Climate Change Effects on Stream Temperatures. J. Am. Water Resour. Assoc. 2013, 49, 1456–1472. [Google Scholar] [CrossRef]
- Benjankar, R.; Tonina, D.; McKean, J.A.; Sohrabi, M.M.; Chen, Q.; Vidergar, D. Dam operations may improve aquatic habitat and offset negative effects of climate change. J. Environ. Manag. 2018, 213, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Daufresne, M.; Bady, P.; Fruget, J.F. Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhône River. Oecologia 2007, 151, 544–559. [Google Scholar] [CrossRef] [PubMed]
- Mouthon, J.; Daufresne, M. Long-term changes in mollusc communities of the Ognon river (France) over a 30-year period. Fundam. Appl. Limnol. Arch. Hydrobiol. 2010, 178, 67–79. [Google Scholar] [CrossRef]
- Sorte, C.J.; Ibanez, I.; Blumenthal, D.M.; Molinari, N.A.; Miller, L.P.; Grosholz, E.D.; Diez, J.M.; D’Antonio, C.M.; Olden, J.D.; Jones, S.J.; et al. Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol. Lett. 2013, 16, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
ID | River | Station | Station Elevation (m a.s.l.) | Surface Area of Catchment (km) | Mean Elevation of Catchment (m a.s.l.) | Distance from Hydropower Release ** (m) | Record of Observation * | |
---|---|---|---|---|---|---|---|---|
RWT | Streamflow | |||||||
Low-land rivers | ||||||||
2016 | Aare | Brugg | 332 | 11,726 | 1010 | - | 1984–2015 | 1984–2015 |
2029 | Aare | Brügg, Aegerten | 428 | 8293 | 1150 | - | 1984–2015 | 1984–2015 |
2030 | Aare | Thun | 548 | 2466 | 1760 | - | 1984–2015 | 1984–2015 |
2044 | Thur | Andelfingen | 356 | 1696 | 770 | - | 1984–2015 | 1984–2015 |
2070 | Emme | Emmenmatt | 638 | 443 | 1069 | - | 1984–2015 | 1984–2015 |
2085 | Aare | Hagneck | 437 | 5104 | 1380 | - | 1984–2015 | 1984–2015 |
2091 | Rhein | Rheinfelden | 262 | 34,526 | 1039 | - | 1984–2008, 2011–2015 | 1984–2015 |
2135 | Aare | Bern, Schönau | 502 | 2945 | 1610 | - | 1984–2015 | 1984–2015 |
2143 | Rhein | Rekingen | 323 | 14,718 | 1080 | - | 1984–2015 | 1984–2015 |
2152 | Reuss | Luzern, Geissmattbrücke | 432 | 2251 | 1500 | - | 1984–2015 | 1984–2015 |
2174 | Rhône | Chancy, Aux Ripes | 336 | 10,323 | 1580 | - | 1984–2015 | 1984–2015 |
2415 | Glatt | Rheinsfelden | 336 | 416 | 498 | - | 1984–2015 | 1984–2015 |
Regulated rivers | ||||||||
2009 | Rhône | Porte Du Scex | 377 | 5244 | 2130 | 26,510 | 1984–2015 | 1984–2015 |
2011 | Rhône | Sion | 484 | 3373 | 2310 | 9300 | 1984–2015 | 1984–2015 |
2019 | Aare | Brienzwiler | 570 | 554 | 2150 | 11,770 | 1984–2015 | 1984–2015 |
2056 | Reuss | Seedorf | 438 | 832 | 2010 | 39,670 | 1984–2015 | 1984–2015 |
2372 | Linth | Mollis, Linthbrücke | 436 | 600 | 1730 | 5600 | 1984–2015 | 1984–2015 |
Snow-fed rivers | ||||||||
2269 | Lonza | Blatten | 1520 | 77.8 | 2630 | - | 2/11/1986–2015 | 1984–2015 |
2462 | Inn | S-chanf | 1645 | 618 | 2466 | - | 1984–2015 | 25/3/1999–2015 |
2161 | Massa | Blatten bei Naters | 1446 | 195 | 2945 | - | 2003–2015 | 1984–2015 |
2232 | Allenbach | Adelboden | 1297 | 28.8 | 1856 | - | 2002–2015 | 1984–2015 |
2256 | Rosegbach | Pontresina | 1766 | 66.5 | 2716 | - | 2004–2015 | 1984–2015 |
2276 | Grosstalbach | Isenth | 767 | 43.9 | 1820 | - | 19/2/2004–2015 | 1984–2015 |
2327 | Dischmabach | Davos, Kriegsmatte | 1668 | 43.3 | 2372 | - | 27/12/2003–2015 | 1984–2015 |
AT vs. RWT | AT vs. SF | RWT vs. SF | ||||
---|---|---|---|---|---|---|
R | p-Value | R | p-Value | R | p-Value | |
(-) | (-) | (-) | (-) | (-) | (-) | |
Low-land rivers | ||||||
JJA | 0.96 | <0.01 | 0.68 | <0.01 | 0.75 | <0.01 |
J | 0.93 | <0.01 | 0.66 | <0.01 | 0.69 | <0.01 |
Regulated rivers | ||||||
JJA | 0.62 | <0.01 | 0.18 | 0.32 | 0.58 | <0.01 |
J | 0.64 | <0.01 | 0.07 | 0.71 | 0.42 | 0.02 |
Snow-fed rivers | ||||||
JJA | 0.49 | <0.01 | −0.11 | 0.53 | 0.20 | 0.26 |
J | 0.67 | <0.01 | −0.26 | 0.15 | 0.13 | 0.48 |
m | p-Value | ||
---|---|---|---|
(C Day/Year) | (-) | (-) | |
Air | |||
JJA | 4.76 | 0.22 | <0.01 |
J | 1.20 | 0.06 | 0.19 |
Low-land rivers | |||
JJA | 4.84 | 0.28 | <0.01 |
J | 1.57 | 0.15 | 0.03 |
Regulated rivers | |||
JJA | 3.16 | 0.72 | <0.01 |
J | 0.90 | 0.57 | <0.01 |
Snow-fed rivers | |||
JJA | 2.89 | 0.70 | <0.01 |
J | 1.09 | 0.64 | <0.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccolroaz, S.; Toffolon, M.; Robinson, C.T.; Siviglia, A. Exploring and Quantifying River Thermal Response to Heatwaves. Water 2018, 10, 1098. https://doi.org/10.3390/w10081098
Piccolroaz S, Toffolon M, Robinson CT, Siviglia A. Exploring and Quantifying River Thermal Response to Heatwaves. Water. 2018; 10(8):1098. https://doi.org/10.3390/w10081098
Chicago/Turabian StylePiccolroaz, Sebastiano, Marco Toffolon, Christopher T. Robinson, and Annunziato Siviglia. 2018. "Exploring and Quantifying River Thermal Response to Heatwaves" Water 10, no. 8: 1098. https://doi.org/10.3390/w10081098
APA StylePiccolroaz, S., Toffolon, M., Robinson, C. T., & Siviglia, A. (2018). Exploring and Quantifying River Thermal Response to Heatwaves. Water, 10(8), 1098. https://doi.org/10.3390/w10081098