An Analysis of Seasonal Waste Draining for the Urban Agglomeration Using Statistical Methods
Abstract
:1. Introduction
2. Characteristics of the Research Area
3. Materials and Methods
3.1. Initial Analysis of the Volume of Outflowing Sewage
3.2. Trend Analysis
3.3. Seasonal Analysis
3.4. Classification of Homogeneous Time Periods in Relation to the Volume of Sewage Outflow
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brabec, E.; Schulte, S.; Richards, P.L. Impervious surfaces and water quality: A review of current literature and its implications for watershed planning. J. Plan. Lit. 2002, 16, 499–514. [Google Scholar] [CrossRef]
- Todeschini, S. Hydrologic and environmental impacts of imperviousness in an industrial catchment of Northern Italy. J. Hydrol. Eng. 2016, 21. [Google Scholar] [CrossRef]
- Gizińska-Górna, M.; Jóźwiakowski, K.; Marzec, M.; Pytka, A.; Sosnowska, B.; Różańska-Boczula, M.; Listosz, A. Analysis of the influence of a hybrid constructed wetland wastewater treatment plant on the water quality of the receiver. Rocz. Ochr. Sr. 2017, 19, 370–393. [Google Scholar]
- Kadlec, R.H. Comparison of free water and horizontal subsurface treatment wetlands. Ecol. Eng. 2009, 35, 159–174. [Google Scholar] [CrossRef]
- Trang, N.T.D.; Konnerup, D.; Schierup, H.-H.; Chiem, N.H.; Tuan, L.A.; Brix, H. Kinetics of pollutant removal from domestic wastewater in a tropical horizontal subsurface flow constructed wetland system: Effects of hydraulic loading rate. Ecol. Eng. 2010, 36, 527–535. [Google Scholar] [CrossRef]
- Seggelke, K.; Löwe, R.; Beeneken, T.; Fuchs, L. Implementation of an integrated real-time control system of sewer system and waste water treatment plant in the city of Wilhelmshaven. Urban Water J. 2013, 10, 330–341. [Google Scholar] [CrossRef]
- Karpf, C.; Krebs, P. Quantification of groundwater infiltration and surface water inflows in urban sewer networks based on a multiple model approach. Water Res. 2011, 45, 3129–3136. [Google Scholar] [CrossRef] [PubMed]
- Yap, H.T.; Ngien, S.K.; Othman, N.; Ghani, A.A.; Abd, N. Preliminary inflow and infiltration study of sewerage systems from two residential areas in Kuantan, Pahang. ESTEEM Acad. J. 2017, 13, 98–106. [Google Scholar]
- Beheshti, A.M.; Saegrov, S.; Ugarelli, R. Infiltration/inflow assessment and detection in urban sewer system. Innsendte Artikler 2015, 1, 24–34. [Google Scholar]
- Yap, H.T.; Ngien, S.K. Assessment on inflow and infiltration in sewerage systems of Kuantan, Pahang. Water Sci. Technol. 2017, 76, 2918–2927. [Google Scholar] [CrossRef] [PubMed]
- Bareš, V.; Stránský, D.; Sýkora, P. Sewer infiltration/inflow: Long-term monitoring based on diurnal variation of pollutant mass flux. Water Sci. Technol. 2009, 60, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.; Prigiobbe, V.; Giulianelli, M.; Baer, E.; Bénédittis, J.D.; Coelho, S.T. Assessing the impact of infiltration and exfiltration in sewer systems using performance indicators: Case studies of the APUSS project. Water Pract. Technol. 2006, 1. [Google Scholar] [CrossRef]
- Bénédittis, J.; Bertrand-Krajewski, J.L. Infiltration in sewer systems: Comparison of measurement methods. Water Sci. Technol. 2005, 52, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Młyńska, A. Experimental analysis of bielany wastewater treatment plant hydraulic load variability. Tech. Trans. 2014, 5, 183–188. [Google Scholar]
- Kaczor, G.; Chmielowski, K.; Bugajski, P. Wpływ rocznej sumy opadów atmosferycznych na objętość wód przypadkowych dopływających do kanalizacji sanitarnej. Rocz. Ochr. Sr. 2017, 19, 668–681. (In Polish) [Google Scholar]
- Bugajski, P.; Kaczor, G.; Chmielowski, K. Variable dynamics of sewage supply to wastewater treatment plant depending on the amount of precipitation water inflowing to sewerage network. J. Water Land Dev. 2017, 33, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Kaczor, G. Wpływ wiosennych roztopów śniegu na dopływ wód przypadkowych do oczyszczalni ścieków bytowych. Acta Sci. Pol. Form. Circ. 2011, 10, 27–34. (In Polish) [Google Scholar]
- Banasik, K.; Hejduk, L. Long term changes in runoff from a small agricultural catchment. Soil Water Res. 2012, 7, 64–72. [Google Scholar] [CrossRef]
- Rutkowska, A.; Ptak, M. On certain stationary tests for hydrological series. Stud. Geotech. Mech. 2012, 4, 51–63. [Google Scholar] [CrossRef]
- Blain, G.C. The influence of nonlinear trends on the power of the trend-free pre-whitening approach. Acta Sci. Agron. 2015, 37, 21–28. [Google Scholar] [CrossRef]
- Mondal, A.; Kundu, S.; Mukhopadhyay, A. Rainfall trend analysis by Mann-Kendall test: A case study of north-eastern part of Cuttack District, Orissa. Int. J. Geol. Earth Environ. Sci. 2012, 2, 70–78. [Google Scholar]
- Blain, G.C. The modified Mann-Kendall test: On the performance of three variance correction approaches. Bragantia Camp. 2013, 72, 416–425. [Google Scholar] [CrossRef]
- Pingale, S.M.; Khare, D.; Jat, M.K.; Adamowski, J. Trend analysis of climate variables in an arid and semi-arid region of the Ajmer District, Rajasthan, India. J. Water Land Dev. 2016, 28, 3–18. [Google Scholar] [CrossRef]
- Baran-Gurgul, K.; Raczyński, K. Dynamika występowania niżówek w rzekach górskich i wyżynnych na przykładzie Wisłoki i górnego Wieprza. Cz. 2. Zmienność wieloletnia. Woda Środowisko Obs. Wiej. 2017, 17, 5–17. (In Polish) [Google Scholar]
- Peng, J.; Zhao, S.; Liu, X.; Tian, L. Identifying the urban-rural fringe using wavelet transform and kernel density estimation: A case study in Beijing City, China. Environ. Model. Assess. 2016, 83, 286–302. [Google Scholar] [CrossRef]
- Pathiraja, S.; Moradkhani, H.; Marshall, L.; Sharma, A.; Geenens, G. Data-driven model uncertainty estimation in hydrologic data assimilation. Water Resour. Res. 2018, 54, 1252–1280. [Google Scholar] [CrossRef]
- Żelazny, M. Czasowo-Przestrzenna Zmienność Cech Fizykochemicznych Wód Tatrzańskiego Parku Narodowego; Instytut Geografii i Gospodarki Przestrzennej UJ: Kraków, Poland, 2012. (In Polish) [Google Scholar]
- Sivakumar, B. Chaos in Hydrology: Bridging Determinism and Stochasticity; Springer: Sydney, Australia, 2016. [Google Scholar]
- Webb, M.; Thoms, M.; Reid, M. Determining the ecohydrological character of aquatic refugia in a dryland river system: The importance of temporal scale. Ecohydrol. Hydrobiol. 2012, 12, 21–33. [Google Scholar] [CrossRef]
- Fernadez, R.; Sayama, T. Hydrological recurrence as a measure for large river basin classification and process understanding. Hydrol. Earth Syst. Sci. 2015, 19, 1919–1941. [Google Scholar] [CrossRef]
- Wałęga, A.; Młyński, D. Seasonality of median monthly discharge in selected Carpathian rivers of the upper Vistula basin. Carpath. J. Earth Environ. Sci. 2017, 12, 617–628. [Google Scholar]
- Eslamian, S. Handbook of Engineering Hydrology; Taylor & Francis Group: Boca Raton, FL, USA, 2014. [Google Scholar]
- Wałęga, A.; Michalec, B. Characteristics of extreme heavy precipitation events occurring in the area of Cracow (Poland). Soil Water Res. 2014, 9, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Wałęga, A.; Młyński, D.; Bogdał, A.; Kowalik, T. Analysis of the course and frequency of high water stages in selected catchments of the upper Vistula basin in the south of Poland. Water 2016, 8, 394–409. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif. 2014, 37, 274–295. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Matczak, P. Climate change regional review: Poland. WIREs Clim. Chang. 2012, 3, 297–311. [Google Scholar] [CrossRef]
- Młyński, D.; Chmielowski, K. Analiza obciążenia hydraulicznego wybranych oczyszczalni powiatu jasielskiego. Inżynieria Ekol. 2016, 50, 171–178. (In Polish) [Google Scholar] [CrossRef]
- Młyński, D.; Chmielowski, K.; Młyńska, A. Analysis of hydraulic load of a wastewater treatment plant in Jasło. J. Water Land Dev. 2016, 28, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Pluta, K.; Mrowiec, M. Analiza oddziaływania systemów kanalizacyjnych na odbiornik. Inżynieria Ekol. 2015, 45, 183–194. (In Polish) [Google Scholar] [CrossRef]
- Kaczor, G.; Bugajski, P.; Bergel, T. Zastosowanie metody trójkąta do obliczania objętości wód infiltracyjnych i przypadkowych w kanalizacji sanitarnej. Inf. Ekol. Teren. Wiej. 2013, 3, 263–274. (In Polish) [Google Scholar]
- Chang, H.; Praskievisz, S.; Parandvash, H. Sensitivity of urban water consumption to weather and climate variability at multiple temporal scales. Int. J. Geospat. Environ. Res. 2014, 1, 1–21. [Google Scholar]
- Kaczor, G.; Bergel, T.; Bugajski, P.; Pijanowski, J. Aspects of sewage disposal from tourist facilities in national parks and other protected areas. Pol. J. Environ. Stud. 2015, 24, 107–114. [Google Scholar] [CrossRef]
- Cabral, M.; Mamade, A.; Amado, C.; Covas, D. Modeling the effect of weather conditions on urban water demand in multiple network areas: A practical approach to improve monthly and seasonal operation. J. Water Supply Res. Technol. Aqua 2016, 65, 612–625. [Google Scholar] [CrossRef]
- Bergel, T.; Szeląg, B.; Woyciechowska, O. Influence of a season on hourly and daily variations in water demand patterns in a rural water supply line—Case study. J. Water Land Dev. 2017, 34, 59–64. [Google Scholar] [CrossRef]
- Santhosh, D.; Srinivas, V. Bivariate frequency analysis of floods using a diffusion Based kernel density estimation estimator. Water Resour. Res. 2015, 49, 8328–8343. [Google Scholar] [CrossRef]
- Kazor, K.; Holloway, R.H.; Cath, T.Y.; Hering, A.S. Comparison of linear and nonlinear dimension reduction techniques for automated process monitoring of a decentralized wastewater treatment facility. Stoch. Environ. Res. Risk Assess. 2016, 30, 1527–1544. [Google Scholar] [CrossRef]
- Xiao, H.; Huang, D.; Pan, Y.; Liu, Y.; Song, K. Fault diagnosis and prognosis of wastewater processes with incomplete data by the auto-associative neural networks and ARMA model. Chemom. Intell. Lab. Syst. 2017, 161, 96–107. [Google Scholar] [CrossRef]
- Młyński, D.; Chmielowski, K.; Młyńska, A. Analiza zmienności ilościowej ścieków dopływających do wybranych oczyszczalni powiatu sanockiego. Acta Sci. Pol. Form. Circ. 2017, 16, 77–90. (In Polish) [Google Scholar] [CrossRef]
- Wąsik, E.; Bugajski, P.; Chmielowski, K.; Cupak, A. Wpływ opadów atmosferycznych w kotlinie sądeckiej na zmienność ilościową ścieków dopływających do oczyszczalni Wielopole. Inf. Ekol. Teren. Wiej. 2016, 2, 543–555. (In Polish) [Google Scholar]
- Cupak, A. Initial results of nonhierarchical cluster methods use for low flow grouping. J. Ecol. Eng. 2017, 18, 44–50. [Google Scholar] [CrossRef]
- Cupak, A.; Wałęga, A.; Michalec, B. Cluster analysis in determination of hydrologically homogeneous regions with low flow. Acta Sci. Pol. Form. Circ. 2017, 16, 53–56. [Google Scholar] [CrossRef]
- Bergel, T.; Woyciechowska, O.; Szeląg, B. Analiza zmienności godzinowego i dobowego zapotrzebowania na wodę w wybranym wodociągu wiejskim—Studium przypadku. Gaz Woda Tech. Sanit. 2017, 4, 171–174. [Google Scholar] [CrossRef]
- Zawilski, M.; Brzezińska, A. Wpływ przeciążenia biologicznej oczyszczalni ścieków w okresach mokrej pogody na jej sprawność. Ochr. Środowiska 2003, 2, 37–42. (In Polish) [Google Scholar]
- Miernik, W.; Wałęga, A. Wpływ czasu eksploatacji na efekty oczyszczania ścieków w oczyszczalni typu Lemna. Inf. Ekol. Teren. Wiej. 2006, 3, 39–51. (In Polish) [Google Scholar]
- Molenda, T. Dynamika zmian wybranych zanieczyszczeń w spływach powierzchniowych zlewni zurbanizowanej. Inf. Ekol. Teren. Wiej. 2006, 4, 117–124. (In Polish) [Google Scholar]
- Ociepa, E. Ocena zanieczyszczenia ścieków deszczowych trafiających do systemów kanalizacyjnych. Inżynieria i Ochr. Środowiska 2011, 4, 357–364. (In Polish) [Google Scholar]
- Masłoń, A. Evaluation of the effectiveness of wastewater treatment plant in Jasło under different hydraulic loading. Arch. Waste Manag. Environ. Protect. 2014, 16, 57–66. [Google Scholar]
Qdmin [m3·d−1] | Qdmean [m3·d−1] | Qdmmax [m3·d−1] | S [m3·d−1] | CS [m3·d−1] | A [-] | K [-] |
---|---|---|---|---|---|---|
2668 | 42,436 | 179,320 | 18,520 | 0.44 | 2.40 | 9.38 |
Z* | p* | n/n* | Z | p | Var(S) | Var*(S) |
---|---|---|---|---|---|---|
−1.189 | 0.234 | 2.462 | −1.866 | 0.062 | 5390.000 | 13,269.610 |
Variable | Colwell Indicators | ||||
---|---|---|---|---|---|
C | M | P | C/P | M/P | |
Sewage outflow | 0.555 | 0.180 | 0.734 | 0.755 | 0.245 |
Atmospheric precipitation | 0.314 | 0.359 | 0.672 | 0.467 | 0.768 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Młyński, D.; Kurek, K.; Bugajski, P. An Analysis of Seasonal Waste Draining for the Urban Agglomeration Using Statistical Methods. Water 2018, 10, 976. https://doi.org/10.3390/w10080976
Młyński D, Kurek K, Bugajski P. An Analysis of Seasonal Waste Draining for the Urban Agglomeration Using Statistical Methods. Water. 2018; 10(8):976. https://doi.org/10.3390/w10080976
Chicago/Turabian StyleMłyński, Dariusz, Karolina Kurek, and Piotr Bugajski. 2018. "An Analysis of Seasonal Waste Draining for the Urban Agglomeration Using Statistical Methods" Water 10, no. 8: 976. https://doi.org/10.3390/w10080976
APA StyleMłyński, D., Kurek, K., & Bugajski, P. (2018). An Analysis of Seasonal Waste Draining for the Urban Agglomeration Using Statistical Methods. Water, 10(8), 976. https://doi.org/10.3390/w10080976