Development of Bubble Characteristics on Chute Spillway Bottom
Abstract
:1. Introduction
2. Hydraulics Model
3. Basic Chute Aerator Flow Properties
Air Concentration and Bubble Frequency Profiles
4. Bottom Air Bubble Characteristics
4.1. Bottom Air Concentration and Bubble Frequency
4.2. Bottom Bubble Chord Length Distributions
4.3. Bottom Turbulent Dissipation Rate
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pan, S.; Shao, Y. Scale effects in modeling air demand by a ramp slot. Scale Eff. Model. Hydraul. Struct. 1984, 4, 1–5. [Google Scholar]
- Rutschmann, P.; Hager, H.W. Air entrainment by spillway aerators. J. Hydraul. Eng. 1990, 116, 765–782. [Google Scholar] [CrossRef]
- Chanson, H. Air bubble entrainment in turbulent water jets discharging into the atmosphere. Aust. Civ. Eng. Trans. 1996, 39, 39–48. [Google Scholar]
- Kramer, K.; Hager, W.H. Air transport in chute flows. Int. J. Multiph. Flow 2005, 31, 1181–1197. [Google Scholar] [CrossRef]
- Kramer, K.; Hager, W.H.; Minor, H.-E. Development of air concentration on chute spillways. J. Hydraul. Eng. 2006, 132, 908–915. [Google Scholar] [CrossRef]
- Pfister, M.; Hager, W.H. Chute aerators I: Air transport characteristics. J. Hydraul. Eng. 2010, 136, 352–359. [Google Scholar] [CrossRef]
- Pfister, M.; Hager, W.H. Chute aerators II: Hydraulic design. J. Hydraul. Eng. 2010, 136, 360–367. [Google Scholar] [CrossRef]
- Pfister, M.; Hager, W.H. Chute aerators: pre aerated approach flow. J. Hydraul. Eng. 2011, 137, 1452–1461. [Google Scholar] [CrossRef]
- Bai, R.; Zhang, F.; Liu, S.; Wang, W. Air concentration and bubble characteristics sownstream of a chute aerator. Int. J. Multiph. Flow 2016, 87, 156–166. [Google Scholar] [CrossRef]
- Bai, R.; Liu, S.; Tian, Z.; Wang, W.; Zhang, F. Experimental investigations on air-water flow properties of offse-aerator. J. Hydraul. Eng. 2018, 144, 04017059. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.M.; Xu, W.L.; Chen, J.G.; Peng, Y. Evolution of pressure and cavitation on side walls affected by lateral divergence angle and opening of radial gate. J. Hydraul. Eng. 2016, 142, 05016003. [Google Scholar] [CrossRef]
- Bai, Z.L.; Peng, Y.; Zhang, J.M. Three-dimensional turbulence simulation of flow in a V-shaped stepped spillway. J. Hydraul. Eng. 2017, 143, 06017011. [Google Scholar] [CrossRef]
- Zhang, J.M.; Chen, J.G.; Wang, Y.R. Experimental study on time-averaged pressures in stepped spillway. J. Hydraul. Res. 2012, 50, 236–240. [Google Scholar] [CrossRef]
- Shi, Q.; Pan, S.; Shao, Y.; Yuan, X. Experimental investigation of flow aeration to prevent cavitation erosion by a deflector. J. Hydraul. Eng. 1983, 3, 1–13. [Google Scholar]
- Pinto, N.L.S.; Neidert, S.H.; Ota, J.J. Aeration at high velocity flows—Part one. Int. Water Power Dam Constr. 1982, 34, 34–38. [Google Scholar]
- Pinto, N.L.S.; Neidert, S.H.; Ota, J.J. Aeration at high velocity flows—Part two. Int. Water Power Dam Constr. 1982, 34, 42–44. [Google Scholar]
- Low, H.S. Model Studies of Clyde Dam Spillway Aerators. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 1986. [Google Scholar]
- Peterka, A.J. The effect of entrained air on cavitation pitting. In Proceedings of the Minnesota International Hydraulic Convention; ASCE: Reston, VA, USA, 1953; pp. 507–518. [Google Scholar]
- Russell, S.O.; Sheenan, G.J. Effect of entrained air on cavitation damage. Can. J. Civ. Eng. 1974, 1, 97–107. [Google Scholar] [CrossRef]
- Semenkov, V.M.; Lentyaev, L.D. Spillway with nappe aeration. Hydrotech. Constr. 1973, 7, 437–441. [Google Scholar] [CrossRef]
- Robinson, P.B.; Blake, J.R.; Kodama, T.; Shima, A.; Tomita, Y. Interaction of cavitation bubbles with a free surface. J. Appl. Phys. 2001, 89, 8225–8237. [Google Scholar] [CrossRef]
- Xu, W.; Bai, L.; Zhang, F. Interaction of a cavitation bubble and an air bubble with a rigid boundary. J. Hydrodyn. 2010, 22, 503–512. [Google Scholar] [CrossRef]
- Brujan, E.A.; Matsumoto, Y. Collapse of micrometer–sized cavitation bubbles near a rigid boundary. Microfluid. Nanofluid. 2012, 13, 957–966. [Google Scholar] [CrossRef]
- Garrett, C.; Li, M.; Farmer, D. The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr. 2000, 30, 2163–2171. [Google Scholar] [CrossRef]
- Deane, G.B.; Stokes, M.D. Scale dependence of bubble creation mechanisms in breaking waves. Nature 2002, 418, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Hinze, J.O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1955, 1, 289–295. [Google Scholar] [CrossRef]
- Killen, J.M. Maximum stable bubble size and associated noise spectra in a turbulent boundary layer. In Proceedings of the Cavitation and Polyphase Flow Forum; ASME: New York, NY, USA, 1982; pp. 1–3. [Google Scholar]
- Lewis, D.A.; Davidson, J.F. Bubble Splitting in Shear Flow. Trans. I. Chem. Eng. 1982, 60, 283–291. [Google Scholar]
- Evans, G.M.; Jameson, G.J.; Atkinson, B.W. Prediction of the bubble size generated by a plunging liquid jet bubble column. Chem. Eng. Sci. 1992, 47, 3265–3272. [Google Scholar] [CrossRef]
- Martínez-Bazán, C.; Montañés, J.L.; Lasheras, J.C. On the break up of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech. 1999, 401, 157–182. [Google Scholar] [CrossRef]
- Martínez-Bazán, C.; Montañés, J.L.; Lasheras, J.C. On the break up of an air bubble injected into a fully developed turbulent flow. Part 2. Size PDF of the resulting daughter bubbles. J. Fluid Mech. 1999, 401, 183–207. [Google Scholar] [CrossRef]
Reference | V0 (m/s) | h0 (m) | F0 | Remarks |
---|---|---|---|---|
Chanson [3] | 9.2 | 0.023 | 19.5 | Model (W = 0.25 m) |
6.2–11.3 | 0.035 | 10.5–19.5 | ||
5.3 | 0.081 | 6.0 | ||
Prifser [6,7,8] | 4.7–7.5 | 0.041–0.066 | 7.4–9.3 | Model (W = 0.30 m) |
Bai [9,10] | 4.0–9.0 | 0.15 | 3.3–7.4 | Model (W = 0.25 m) |
Shi [14] | 14.0 | 0.058 | 18.6 | Model (W = 0.20 m) |
Pinto [15,16] | 19.5–27.7 | 0.38–1.06 | 7.1–10.3 | Prorotype (Foz do Areia) |
19.9–32.7 | 0.38–1.43 | 8.7–11.1 | ||
19.9–36.2 | 0.38–1.29 | 10.3–11.4 | ||
Low [17] | 4.2–9.5 | 0.05 | 6–13.5 | Model (W = 0.25 m) |
Run | V0 (m/s) | hs (m) | θ0 (°) | α (°) | F0 |
---|---|---|---|---|---|
S1 | 5.0–7.0 | 0.03 | 5.71 | 12.5 | 3.8–5.8 |
S2 | 4.0–6.0 | 0.05 | 12.5 | 18.2 | 3.3–4.9 |
S3 | 5.0–7.0 | 0.045 | 0 | 5.7 | 3.8–5.8 |
S4 | 4.0–6.0 | 0.045 | 5.7 | 14.1 | 3.3–4.9 |
S5 | 6.0–9.0 | 0.045 | 14.1 | 14.1 | 4.9–7.4 |
Reference | Wc | Fluid | Flow Situation | Comments |
---|---|---|---|---|
Hinze [26] | 0.585 | Two co-axial cylinders, the inner one rotating | Dimensional analysis. | |
Killen [27] | 1.017 | Air bubbles in water | Turbulent boundary layer | Experimental data. V in the range 3.66 to 18.3 m/s. |
Lewis and Davidson [28] | 2.35 | Air and Helium bubbles in water and Fluorisol | Circular jet | Experimental data. V in the range 0.9 to 2.2 m/s. |
Evans et al. [29] | 0.60 | Air bubbles in water | Confined plunging water jet | Experimental data. V in the range 7.8 to 15 m/s. |
Chanson [3] | 1.00 | Air bubbles in water | Self-aerated flow | Experimental data. V in the range 3.2 to 5.3m/s. |
Martínez-Bazán et al. [30,31] | 1.00 | Air bubbles in water | Submerged water jet | Experimental data. V = 17.0 m/s. |
Deane and Stokes [25] | 4.7 | Air bubbles in water | Breaking waves | Experimental data. |
Bai et al. [9] | 1.00 | Air bubbles in water | Chute aerator flow | Experimental data. V in the range 4.0 to 9.0 m/s. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, R.; Liu, C.; Feng, B.; Liu, S.; Zhang, F. Development of Bubble Characteristics on Chute Spillway Bottom. Water 2018, 10, 1129. https://doi.org/10.3390/w10091129
Bai R, Liu C, Feng B, Liu S, Zhang F. Development of Bubble Characteristics on Chute Spillway Bottom. Water. 2018; 10(9):1129. https://doi.org/10.3390/w10091129
Chicago/Turabian StyleBai, Ruidi, Chang Liu, Bingyang Feng, Shanjun Liu, and Faxing Zhang. 2018. "Development of Bubble Characteristics on Chute Spillway Bottom" Water 10, no. 9: 1129. https://doi.org/10.3390/w10091129
APA StyleBai, R., Liu, C., Feng, B., Liu, S., & Zhang, F. (2018). Development of Bubble Characteristics on Chute Spillway Bottom. Water, 10(9), 1129. https://doi.org/10.3390/w10091129