Hydropower Future: Between Climate Change, Renewable Deployment, Carbon and Fuel Prices
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Hydrological Model
- Series of daily precipitation and temperature from the weather station(s) considered for the study basin. A pre-processing routine corrects measurement errors like snow plugging or wind-induced under-catch [59];
- Data terrain model (DTM) to evaluate the catchment area and extrapolate the hypsometric curve for the subdivision in elevation bands;
- Curve Number of the basin (CN);
- Average long-term temperatures to compute the evapotranspiration (ETP);
- Degree day parameters of the snow. They are calibrated using recorded daily temperature and processed solid precipitation series, minimizing the root-mean-square error (RMSE) (mm) by comparing values of simulated and real values of snow water equivalent (SWE).
2.2. The Hydropower Management Model
2.3. Future Scenarios
- Future-like-present (climate scenario 1): This reference allows us to evaluate the effect of climate change simulated with the other scenarios. We randomly extracted years of precipitation and temperature series from the historical data. This preserves the intra-year dependence, but not inter-year dependence [26]. The extraction is repeated 100 times to assess the uncertainty associated with the future scenarios.
- Warmer-future (climate scenarios 2–4): These scenarios assess the impact of warmer temperature only and neglect any trend in precipitation associated with a warming climate [67,68,69]. We modelled three rates of temperature increase: +0.03, +0.06 and +0.09 °C/year. Please note that the +0.03 °C trend is consistent with the Intergovernmental Panel on Climate Change (IPCC) Fifth Report scenario RCP8.5 [14]. Uncertainty is simulated by randomly extracting 100 series of precipitation and temperature which increase according to each trend.
- Liquid-precipitation-future (climate scenario 5): this scenario set up an extreme climate warming future for snow-dominated catchments. All the precipitation is assumed to be liquid, neglecting temperature trends. The procedure to generate uncertainty uses a Monte Carlo technique as done in Bongio et al. [26].
- Mixed scenarios (climate scenarios 6–8): these scenarios consider the combined effects of variations in temperatures and precipitation regimes. For each of these, 100 series of temperature and precipitation are extracted and then precipitation is assumed to be all liquid. Finally, all three temperature trends mentioned in the warmer-future scenarios are applied.
2.4. Case Study and Data
3. Model Calibration and Validation
3.1. Calibration and Validation of the Hydrological Model
3.2. Validation of the Management Model
4. Future Scenarios: Results and Discussions
4.1. Climate Change Effects on Flow Regimes
4.2. Impact of Climate Change on the Hydropower Plant
4.3. Impacts of Electricity Price Scenarios
4.4. Mixed Scenarios
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Apadula, F.; Bassini, A.; Elli, A.; Scapin, S. Relationships between meteorological variables and monthly electricity demand. Appl. Energy 2012, 98, 346–356. [Google Scholar] [CrossRef]
- Swiss Federal Council Message Relatif Au Premier Paquet De Mesures De La Stratégie Enérgétique 2050. Available online: www.news.admin.ch/message/index.html?lang=fr&msg-id=50123 (accessed on 4 March 2018).
- International Renewable Energy Agency (IRENA). Global Energy Transformation: A Roadmap to 2050; IRENA: Abu Dhabi, the United Arab Emirates, 2018. [Google Scholar]
- IEA. Energy and Climate Change; World Energy Outlook Special Report; IEA: Paris, France, 2015. [Google Scholar]
- Cherp, A.; Vinichenko, V.; Jewell, J.; Suzuki, M.; Antal, M. Comparing electricity transitions: A historical analysis of nuclear, wind and solar power in Germany and Japan. Energy Policy 2017, 101, 612–628. [Google Scholar] [CrossRef] [Green Version]
- Valentine, S.V. Japanese wind energy development policy: Grand plan or group think? Energy Policy 2011, 39, 6842–6854. [Google Scholar] [CrossRef]
- Glaser, A. From Brokdorf to Fukushima: The long journey to nuclear phase-out. Bull. At. Sci. 2012, 68, 10–21. [Google Scholar] [CrossRef]
- Feldhoff, T. Post-Fukushima energy paths: Japan and Germany compared. Bull. At. Sci. 2014, 70, 87–96. [Google Scholar] [CrossRef]
- Jones, L.E. Renewable Energy Integration: Practical Management of Variability, Uncertainty and Flexibility in Power Grids, 1st ed.; Elsevier Inc.: New York, NY, USA, 2014; ISBN 9780124079106. [Google Scholar]
- Verzijlbergh, R.A.; De Vries, L.J.; Dijkema, G.P.J.; Herder, P.M. Institutional challenges caused by the integration of renewable energy sources in the European electricity sector. Renew. Sustain. Energy Rev. 2017, 75, 660–667. [Google Scholar] [CrossRef] [Green Version]
- Scherer, L.; Pfister, S. Hydropower’s Biogenic Carbon Footprint. PLoS ONE 2016, 11, e0161947. [Google Scholar] [CrossRef] [PubMed]
- Gaudard, L.; Romerio, F. The future of hydropower in Europe: Interconnecting climate, markets and policies. Environ. Sci. Policy 2014, 37, 172–181. [Google Scholar] [CrossRef]
- Ravazzani, G.; Dalla Valle, F.; Gaudard, L.; Mendlik, T.; Gobiet, A.; Mancini, M. Assessing Climate Impacts on Hydropower Production: The Case of the Toce River Basin. Climate 2016, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; IPCC: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Brunetti, M.; Lentini, G.; Maugeri, M.; Nanni, T.; Auer, I.; Böhm, R.; Schöner, W. Climate variability and change in the greater alpine region over the last two centuries based on multi-variable analysis. Int. J. Climatol. 2009, 29, 2197–2225. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M.; Nanni, T.; Auer, I.; Böhm, R.; Schöner, W. Precipitation variability and changes in the greater Alpine region over the 1800–2003 period. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st century climate change in the European Alps—A review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef] [PubMed]
- Lehner, B.; Czisch, G.; Vassolo, S. The impact of global change on the hydropower potential of Europe: A model-based analysis. Energy Policy 2005, 33, 839–855. [Google Scholar] [CrossRef]
- Wagner, T.; Themeßl, M.; Schüppel, A.; Gobiet, A.; Stigler, H.; Birk, S. Impacts of climate change on stream flow and hydro power generation in the Alpine region. Environ. Earth Sci. 2017, 76, 4. [Google Scholar] [CrossRef]
- Schaefli, B.; Hingray, B.; Musy, A. Climate change and hydropower production in the Swiss Alps: Quantification of potential impacts and related modelling uncertainties. Hydrol. Earth Syst. Sci. 2007, 11, 1191–1205. [Google Scholar] [CrossRef]
- Koch, F.; Prasch, M.; Bach, H.; Mauser, W.; Appel, F.; Weber, M. How will hydroelectric power generation develop under climate change scenarios? A case study in the upper Danube basin. Energies 2011, 4, 1508–1541. [Google Scholar] [CrossRef] [Green Version]
- Majone, B.; Villa, F.; Deidda, R.; Bellin, A. Impact of climate change and water use policies on hydropower potential in the south-eastern Alpine region. Sci. Total Environ. 2016, 543, 965–980. [Google Scholar] [CrossRef] [PubMed]
- Schaefli, B. Projecting hydropower production under future climates: A guide for decision-makers and modelers to interpret and design climate change impact assessments. Wiley Interdiscip. Rev. Water 2015, 2, 271–289. [Google Scholar] [CrossRef]
- Beniston, M. Impacts of climatic change on water and associated economic activities in the Swiss Alps. J. Hydrol. 2012, 412–413, 291–296. [Google Scholar] [CrossRef]
- Gaudard, L.; Gilli, M.; Romerio, F. Climate Change Impacts on Hydropower Management. Water Resour. Manag. 2013, 27, 5143–5156. [Google Scholar] [CrossRef]
- Bongio, M.; Avanzi, F.; De Michele, C. Hydroelectric power generation in an Alpine basin: Future water-energy scenarios in a run-of-the-river plant. Adv. Water Resour. 2016, 94, 318–331. [Google Scholar] [CrossRef]
- Finger, D.; Heinrich, G.; Gobiet, A.; Bauder, A. Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Hänggi, P.; Weingartner, R. Variations in Discharge Volumes for Hydropower Generation in Switzerland. Water Resour. Manag. 2012, 26, 1231–1252. [Google Scholar] [CrossRef]
- Ahmed, T.; Muttaqi, K.M.; Agalgaonkar, A.P. Climate change impacts on electricity demand in the State of New South Wales, Australia. Appl. Energy 2012, 98, 376–383. [Google Scholar] [CrossRef]
- Christenson, M.; Manz, H.; Gyalistras, D. Climate warming impact on degree-days and building energy demand in Switzerland. Energy Convers. Manag. 2006, 47, 671–686. [Google Scholar] [CrossRef]
- Golombek, R.; Kittelsen, S.A.C.; Haddeland, I. Climate change: Impacts on electricity markets in Western Europe. Clim. Chang. 2012, 113, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Maran, S.; Volonterio, M.; Gaudard, L. Climate change impacts on hydropower in an alpine catchment. Environ. Sci. Policy 2014, 43, 15–25. [Google Scholar] [CrossRef]
- Madani, K.; Guégan, M.; Uvo, C.B. Climate change impacts on high-elevation hydroelectricity in California. J. Hydrol. 2014, 510, 153–163. [Google Scholar] [CrossRef]
- Guegan, M.; Madani, K.; Uvo, C.B. Climate Change Effects on the High Elevation Hydropower System with Consideration of Warming Impacts on Electricity Demand and Pricing; California Energy Commission: Sacramento, CA, USA, 2012.
- Gaudard, L.; Avanzi, F.; De Michele, C. Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant. Appl. Energy 2018, 210, 604–612. [Google Scholar] [CrossRef]
- Schillinger, M.; Weigt, H.; Barry, M.; Schumann, R. Hydropower Operation in a Changing Market Environment—A Swiss Case Study. SSRN Electron. J. 2017. [Google Scholar] [CrossRef]
- Winemiller, K.O.; McIntyre, P.B.; Castello, L.; Fluet-Chouinard, E.; Giarrizzo, T.; Nam, S.; Baird, I.G.; Darwall, W.; Lujan, N.K.; Harrison, I.; et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 2016, 351, 128–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziv, G.; Baran, E.; Nam, S.; Rodríguez-Iturbe, I.; Levin, S.A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl. Acad. Sci. USA 2012, 109, 5609–5614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poff, N.L.; Olden, J.D. Can dams be designed for sustainability? Science 2017, 358, 1252–1253. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Zhou, J.; Ouyang, S.; Zhang, R.; Zhang, Y. Multi-objective artificial bee colony algorithm for long-term scheduling of hydropower system: A case study of China. Water Util. J. 2014, 7, 13–23. [Google Scholar]
- Kougias, I.; Katsifarakis, L.; Theodossiou, N. Medley Multiobjective Harmony Search Algorithm: Application on a water resources management problem. Eur. Water 2012, 39, 41–52. [Google Scholar]
- Afshar, A.; Shafii, M.; Haddad, O.B. Optimizing multi-reservoir operation rules: An improved HBMO approach. J. Hydroinform. 2010, 13, 121–139. [Google Scholar] [CrossRef]
- Ahmadi, M.; Bozorg Haddad, O.; Mariño, M.A. Extraction of Flexible Multi-Objective Real-Time Reservoir Operation Rules. Water Resour. Manag. 2014, 28, 131–147. [Google Scholar] [CrossRef]
- Haddad, O.B.; Afshar, A.; Mariño, M.A. Honey-bees mating optimization (HBMO) algorithm: A new heuristic approach for water resources optimization. Water Resour. Manag. 2006, 20, 661–680. [Google Scholar] [CrossRef]
- Wagner, B.; Hauer, C.; Schoder, A.; Habersack, H. A review of hydropower in Austria: Past, present and future development. Renew. Sustain. Energy Rev. 2015, 50, 304–314. [Google Scholar] [CrossRef]
- Cherry, J.E.; Knapp, C.; Trainor, S.; Ray, A.J.; Tedesche, M.; Walker, S. Planning for climate change impacts on hydropower in the Far North. Hydrol. Earth Syst. Sci. 2017, 21, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Bliss, A.; Hock, R.; Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth Surf. 2014, 119, 717–730. [Google Scholar] [CrossRef] [Green Version]
- Gaudard, L.; Gabbi, J.; Bauder, A.; Romerio, F. Long-term Uncertainty of Hydropower Revenue Due to Climate Change and Electricity Prices. Water Resour. Manag. 2016, 30, 1325–1343. [Google Scholar] [CrossRef] [Green Version]
- Swiss Federal Office of Energy (SFOE). Swiss Statistics of Electricity 2017. Available online: http://www.bfe.admin.ch/themen/00526/00541/00542/00630/index.html?lang=en&dossier_id=00765 (accessed on 4 March 2018).
- Glomsrød, S.; Wei, T.; Mideksa, T.; Samset, B.H. Energy market impacts of nuclear power phase-out policies. Mitigation Adaptation Strateg. Glob. Change 2015, 20, 1511–1527. [Google Scholar] [CrossRef]
- Redondo, P.D.; van Vliet, O. Modelling the Energy Future of Switzerland after the Phase Out of Nuclear Power Plants. Energy Procedia 2015, 76, 49–58. [Google Scholar] [CrossRef]
- Gaudard, L.; Romerio, F.; Dalla Valle, F.; Gorret, R.; Maran, S.; Ravazzani, G.; Stoffel, M.; Volonterio, M. Climate change impacts on hydropower in the Swiss and Italian Alps. Sci. Total Environ. 2014, 493, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Bartolini, E.; Allamano, P.; Laio, F.; Claps, P. Runoff regime estimation at high-elevation sites: A parsimonious water balance approach. Hydrol. Earth Syst. Sci. 2011, 15, 1661–1673. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Rango, A.; Martinec, J. Revisiting the degree-day method for snowmelt computations. JAWRA J. Am. Water Resour. Assoc. 1995, 31, 657–669. [Google Scholar] [CrossRef]
- Mockus Victor Design Hydrographs. National Engineering Handbook; U.S. Department of Agriculture: Washington, DC, USA, 1972; p. 127.
- Bahr, D.; Meier, M.; Peckham, S. The physical basis of volume-area scaling. J. Geophys. Res. 1997, 102, 20335–20362. [Google Scholar] [CrossRef]
- Nash, J.E. The form of the instantaneous unit hydrograph. Int. Assoc. Hydrol. Sci. 1957, 45, 114–121. [Google Scholar]
- Avanzi, F.; De Michele, C.; Ghezzi, A.; Jommi, C.; Pepe, M. A processing-modeling routine to use SNOTEL hourly data in snowpack dynamic models. Adv. Water Resour. 2014, 73, 16–29. [Google Scholar] [CrossRef]
- Rolland, C. Spatial and seasonal variations of air temperature lapse rates in alpine regions. J. Clim. 2003, 16, 1032–1046. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- DeWalle, D.R.; Rango, A. Principles of Snow Hydrology; Cambridge University Press: Cambridge, UK, 2008; ISBN 9780511535673. [Google Scholar]
- Dueck, G.; Scheuer, T. Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing. J. Comput. Phys. 1990, 90, 161–175. [Google Scholar] [CrossRef]
- Moscato, P.; Fontanari, J.F. Stochastic versus deterministic update in simulated annealing. Phys. Lett. A 1990, 146, 204–208. [Google Scholar] [CrossRef]
- Winker, P. Optimization Heuristics in Econometrics: Application of Threshold Accepting; Wiley: Hoboken, NJ, USA, 2001; ISBN 978-0-471-85631-3. [Google Scholar]
- Kottegoda, N.T.; Rosso, R. Applied Statistics for Civil and Environmental Engineers; Wiley-Blackwell: Oxford, UK, 2008; ISBN 978-1-405-17917-1. [Google Scholar]
- Beniston, M. Mountain climates and climatic change: An overview of processes focusing on the European Alps. Pure Appl. Geophys. 2005, 162, 1587–1606. [Google Scholar] [CrossRef]
- Böhm, R.; Auer, I.; Brunetti, M.; Maugeri, M.; Nanni, T.; Schöner, W. Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int. J. Clim. 2001, 21, 1779–1801. [Google Scholar] [CrossRef]
- Cislaghi, M.; De Michele, C.; Ghezzi, A.; Rosso, R. Statistical assessment of trends and oscillations in rainfall dynamics: Analysis of long daily Italian series. Atmos. Res. 2005, 77, 188–202. [Google Scholar] [CrossRef]
- European Comission. EU Reference Scenario. 2016. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/ref2016_report_final-web.pdf (accessed on 20 March 2018).
- AET Impianto idroelettrico Tremorgio. Available online: https://www.aet.ch/IT/Impianto-idroelettrico-Tremorgio-e68a9800#.Wq62d_nwbct (accessed on 18 March 2018).
- Krajewski, W.F.; Ciach, G.J.; Habib, E. An analysis of small-scale rainfall variability in different climatic regimes. Hydrol. Sci. J. 2003, 48, 151–162. [Google Scholar] [CrossRef] [Green Version]
- WSL CORINE Switzerland. Available online: https://www.wsl.ch/en/projects/corine-switzerland.html (accessed on 20 March 2018).
- MeteoSchweiz. Rapporto Sul Clima—Cantone Ticino. 2012. Available online: https://www.meteoschweiz.admin.ch/home/service-und-publikationen/publikationen.subpage.html/de/data/publications/2012/1/rapporto-sul-clima---cantone-ticino.html (accessed on 20 March 2018).
- Cheng, K.S.; Lien, Y.T.; Wu, Y.C.; Su, Y.F. On the criteria of model performance evaluation for real-time flood forecasting. Stoch. Environ. Res. Risk Assess. 2017, 31, 1123–1146. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines For Systematic Quantification Of Accuracy in Watershed Simulations. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [Google Scholar]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.J.; Pagano, T.C.; Zhou, S.L.; Hapuarachchi, H.A.P.; Zhang, L.; Robertson, D.E. Monthly versus daily water balance models in simulating monthly runoff. J. Hydrol. 2011, 404, 166–175. [Google Scholar] [CrossRef]
- Katsushima, T.; Yamaguchi, S.; Kumakura, T.; Sato, A. Experimental analysis of preferential flow in dry snowpack. Cold Reg. Sci. Technol. 2013, 85, 206–216. [Google Scholar] [CrossRef]
- Eng, K.; Milly, P.C.D. Relating low-flow characteristics to the base flow recession time constant at partial record stream gauges. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
Scenario | Explanation |
---|---|
EU Reference Scenario (Scenario 1) | As in EU Energy Trends 1 |
Base Price 2015 Scenario (Scenario 2) | Carbon or fuel prices supposed to be equal to 2015 |
C+ (Scenario 3) | Slow increase of carbon price (35 €/t in 2030) |
C++ (Scenario 4) | Fast increase in carbon price (50 €/t in 2030) |
F+ (Scenario 5) | Slow increase in fuel price (+50% until 2030) |
F++ (Scenario 6) | Fast increase in fuel price (+100% until 2030) |
R+ (Scenario 7) | Stronger increase in wind and solar (+10% relative to EU Trend) |
R− (Scenario 8) | Weaker increase in wind and solar (−10% relative to EU Trend) |
Combinations (Scenarios from 9 to 28) | Combination of all the scenarios |
Tremorgio Basin and Power Plant | |
---|---|
Catchment area (km2) | 5.07 |
Glacier coverage (%) | 0 |
Maximum elevation (m a.s.l.) | 2635 |
Minimum elevation (m a.s.l.) | 1830 |
Reservoir volume available (Mm3) | 5.54 |
Maximum reservoir elevation (m a.s.l.) | 1830 |
Minimum reservoir elevation (m a.s.l.) | 1800 |
Power plant elevation (m a.s.l) | 950 |
Maximum discharge (m3/s) | 1.6 |
Type of turbine | Pelton |
Power installed (MW) | 10 |
Efficiency (-) | 0.75 |
n | kliq (days) | ksnow (days) | kbase (days) | DDFmin (mm/d°C) | DDFmax (mm/d°C) | TLR (°C/100 m) |
---|---|---|---|---|---|---|
3.5 | 0.06 | 18 | 14 | 1.05 | 3.35 | 0.58 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranzani, A.; Bonato, M.; Patro, E.R.; Gaudard, L.; De Michele, C. Hydropower Future: Between Climate Change, Renewable Deployment, Carbon and Fuel Prices. Water 2018, 10, 1197. https://doi.org/10.3390/w10091197
Ranzani A, Bonato M, Patro ER, Gaudard L, De Michele C. Hydropower Future: Between Climate Change, Renewable Deployment, Carbon and Fuel Prices. Water. 2018; 10(9):1197. https://doi.org/10.3390/w10091197
Chicago/Turabian StyleRanzani, Alessandro, Mattia Bonato, Epari Ritesh Patro, Ludovic Gaudard, and Carlo De Michele. 2018. "Hydropower Future: Between Climate Change, Renewable Deployment, Carbon and Fuel Prices" Water 10, no. 9: 1197. https://doi.org/10.3390/w10091197
APA StyleRanzani, A., Bonato, M., Patro, E. R., Gaudard, L., & De Michele, C. (2018). Hydropower Future: Between Climate Change, Renewable Deployment, Carbon and Fuel Prices. Water, 10(9), 1197. https://doi.org/10.3390/w10091197