Estimating the Infiltration Area for Concentrated Stormwater Spreading over Grassed and Other Slopes
Abstract
:1. Introduction
2. Methods
2.1. Model
2.2. Physical Testing
2.3. Testing Protocol
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EPA. Green Infrastructure Permitting and Enforcement Series: Factsheet 4; EPA 832F12015; EPA: Washington, DC, USA, 2009.
- EPA. Summary of State Post Construction Stormwater Standards; Office of Water, EPA: Washington, DC, USA, 2016.
- TSM. Tennessee Stormwater Management. 2015. Available online: http://tnpermanentstormwater.org/manual.asp (accessed on 9 October 2017).
- Coussat, P.; Proust, S. Slow, unconfined spreading of a mudflow. J. Geophys. Res. 1996, 101, 217–229. [Google Scholar] [CrossRef]
- Schmitz, G.H.; Seus, G.J. Analytical model of level basin irrigation. J. Irrig. Drain. Eng. 1989, 115, 78–95. [Google Scholar] [CrossRef]
- EPA. National Stormwater Calculator User’s Guide. 2010. Available online: http://www.epa.gov/nrmrl/wswrd/wq/models/swc/ (accessed on 14 September 2017).
- TNRRAT. Tennessee Runoff Reduction. 2015. Available online: www.tnpermanentstormwater.org/TNRRAT.asp (accessed on 9 October 2017).
- Singh, V.; Bhallamudi, S.M. Hydrodynamic modeling of basin irrigation. J. Irrig. Drain. Eng. 1997, 123, 407–414. [Google Scholar] [CrossRef]
- Guardo, M.; Oad, R.; Podmore, T.H. Comparison of zero-inertia and volume balance advance-infiltration models. J. Hydraul. Eng. 2000, 126, 457–465. [Google Scholar] [CrossRef]
- Strelkoff, T.S.; Tamimi, A.H.; Clemmens, A.J. Two-dimensional basin flow with irregular bottom configuration. J. Irrig. Drain. Eng. 2003, 129, 391–401. [Google Scholar] [CrossRef]
- Ebrahimian, H.; Liaghat, A.; Parsinejad, M.; Abbasi, F.; Navabian, M. Comparison of one- and two-dimensional models to simulate alternate and conventional furrow fertigation. J. Irrig. Drain. Eng. 2012, 138, 929–938. [Google Scholar] [CrossRef]
- Manning, R. On the flow of water in open channels and pipes. Trans. Inst. Civ. Eng. Irel. Dublin 1891, 20, 161–207. [Google Scholar]
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- USDA-NRCS. Urban hydrology for small watersheds. In Technical Release, 2nd ed.; Conservation Engineering Division, NRCS: Washington, DC, USA, 1986. [Google Scholar]
- Reed, J.; Kibler, D. Hydraulic resistance of pavement surfaces. J. Transp. Eng. 1983, 109, 286–296. [Google Scholar] [CrossRef]
- Simmons, C.S.; Keller, J.M.; Hylden, J.L. Spills on Flat Inclined Pavement; PNNL-14577; Pacific Northwest Laboratory: Washington, DC, USA, 2004. [Google Scholar]
- Yoder, D.C.; Wilkerson, J.B.; Buchanan, J.R.; Hurley, K.J.; Yoder, R.E. Development and evaluation of a device to control time varying flows. Trans. ASAE 1998, 41, 325–332. [Google Scholar] [CrossRef]
Sy | 2.3% | 6.3% | 8.8% | 9.4% | 13.3% | 15.9% |
n | 0.013 | 0.021 | 0.025 | 0.026 | 0.031 | 0.034 |
Surface | Flowrate (LPM) | Slope % | Area Measure (m2) | Area Model (m2) | Area Error | NMAEx * | RMSEx ** (cm) |
---|---|---|---|---|---|---|---|
Roughened Paint | 45.2 | 2.3 | 2.89 | 2.61 | −9.5% | 8.9% | 6.3 |
8.8 | 1.54 | 1.67 | 8.4% | 9.1% | 3.4 | ||
13.3 | 1.41 | 1.45 | 2.6% | 3.8% | 1.5 | ||
94.6 | 2.3 | 3.25 | 3.26 | 0.4% | 4.0% | 4.2 | |
8.8 | 1.87 | 2.05 | 9.7% | 10.7% | 4.9 | ||
140.1 | 2.3 | 3.69 | 3.63 | −1.6% | 2.5% | 3.1 | |
6.3 | 2.37 | 2.56 | 8.0% | 8.4% | 4.9 | ||
9.4 | 2.27 | 2.22 | −2.5% | 3.6% | 2.4 | ||
13.3 | 1.97 | 1.96 | −0.5% | 4.0% | 2.0 | ||
185.5 | 2.3 | 3.88 | 3.91 | 0.8% | 3.6% | 4.4 | |
8.8 | 2.71 | 2.44 | −10.2% | 9.8% | 6.9 | ||
13.3 | 2.30 | 2.10 | −8.3% | 8.0% | 5.4 | ||
abs. mean 5.2% | mean 6.4% | mean 4.1 | |||||
fine turf | 45.2 | 5.5 | 2.64 | 2.51 | −5.0% | 6.6% | 8.2 |
8.6 | 3.16 | 3.06 | −3.1% | 4.3% | 4.3 | ||
11.9 | 2.66 | 2.60 | −1.9% | 3.7% | 2.9 | ||
15.9 | 2.20 | 2.25 | 2.4% | 2.7% | 7.5 | ||
94.6 | 7 | 2.32 | 2.10 | −9.5% | 10.2% | 10.5 | |
9.5 | 2.52 | 2.33 | −7.5% | 8.4% | 8.1 | ||
11.9 | 3.32 | 3.11 | −6.2% | 6.8% | 6.6 | ||
14.9 | 2.94 | 2.78 | −5.5% | 5.7% | 5.4 | ||
140.1 | 9.3 | 2.43 | 2.59 | 6.6% | 6.5% | 6.1 | |
11.9 | 3.04 | 3.42 | 12.2% | 12.1% | 0.9 | ||
abs. mean 6.0% | mean 6.7% | mean 6.1 | |||||
course turf | 45.2 | 5.5 | 3.73 | 3.82 | 2.4% | 8.9% | 10.3 |
7.4 | 3.13 | 3.30 | 5.2% | 9.7% | 10.0 | ||
9.9 | 3.01 | 2.85 | −5.1% | 6.2% | 6.2 | ||
15.2 | 2.40 | 2.28 | −5.0% | 7.5% | 6.0 | ||
94.6 | 6.8 | 2.39 | 2.13 | −10.6% | 11.1% | 11.8 | |
9.9 | 3.56 | 3.41 | −4.1% | 4.1% | 4.2 | ||
13 | 3.18 | 2.98 | −6.3% | 6.6% | 6.2 | ||
16.3 | 2.85 | 2.65 | −6.9% | 8.0% | 7.1 | ||
140.1 | 7 | 1.77 | 1.68 | −4.9% | 5.8% | 7.6 | |
9.5 | 3.70 | 3.82 | 3.5% | 4.2% | 4.1 | ||
11.9 | 3.24 | 3.42 | 5.5% | 5.7% | 5.1 | ||
15.9 | 2.65 | 2.95 | 11.5% | 11.1% | 7.9 | ||
abs. mean 5.9% | mean 7.4% | mean 7.2 | |||||
all data | abs. mean 5.7% | mean 6.8% | mean 5.8 | ||||
st. dev. 6.6% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyner, J.S.; Yoder, D.C.; Parker, J.; Credille, W.C. Estimating the Infiltration Area for Concentrated Stormwater Spreading over Grassed and Other Slopes. Water 2018, 10, 1200. https://doi.org/10.3390/w10091200
Tyner JS, Yoder DC, Parker J, Credille WC. Estimating the Infiltration Area for Concentrated Stormwater Spreading over Grassed and Other Slopes. Water. 2018; 10(9):1200. https://doi.org/10.3390/w10091200
Chicago/Turabian StyleTyner, John S., Daniel C. Yoder, Jacob Parker, and William C. Credille. 2018. "Estimating the Infiltration Area for Concentrated Stormwater Spreading over Grassed and Other Slopes" Water 10, no. 9: 1200. https://doi.org/10.3390/w10091200
APA StyleTyner, J. S., Yoder, D. C., Parker, J., & Credille, W. C. (2018). Estimating the Infiltration Area for Concentrated Stormwater Spreading over Grassed and Other Slopes. Water, 10(9), 1200. https://doi.org/10.3390/w10091200