Assessing Slope Forest Effect on Flood Process Caused by a Short-Duration Storm in a Small Catchment
Abstract
:1. Introduction
2. Numerical Model
3. Evaluation of Land Use Effects on Rainfall-Flood Process in a V-Shaped Catchment
3.1. Land Use Effects on Flood Mitigation for Different Channel Slopes
3.2. Land Use Effects on Flood Mitigation for Different Side Slopes
3.3. Land Use Effects on Flood Mitigation for Different Vegetation Cover Patterns
4. Land Use Effects on Rainfall-Runoff Process in a Realistic Catchment
4.1. Calibration and Validation
4.2. Land Use Effect Simulation on Flood Mitigation in Wangmaogou Catchment
5. Conclusions
- The effect of the side slope gradient is less sensitive than that of the channel slope for the same land use and rainfall patterns;
- When the channel slope () is smaller than the critical channel slope termed as , the forest located in the middle of the catchment slope could most effectively attenuate the flood peak, while that in the downstream causes the most sever flood;
- On the contrary, if the channel slope () is higher than critical channel slope, the forest located in the downstream of the catchment slope mitigates the peak discharge in a most effective way, while that in the upper and middle part have slight difference;
- The fragmentation of vegetation does not show more obvious effects on flood reduction compared with the integral vegetation patterns with the same area proportion;
- Meanwhile, the flood mitigation extent becomes higher as the rainfall becomes more intense, indicating the optimal land use has better performance for heavier flood.
Author Contributions
Funding
Conflicts of Interest
References
- Ali, M.; Khan, S.J.; Aslam, I.; Khan, Z. Simulation of the impacts of land-use change on surface runoff of Lai Nullah Basin in Islamabad, Pakistan. Landsc. Urban Plan. 2011, 102, 271–279. [Google Scholar] [CrossRef]
- Becker, A.; Gruenewald, U. Disaster Management: Flood Risk in Central Europe. Science 2003, 300, 1099. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.; Quinn, P.; Barber, N.; Jonczyk, J. A framework for managing runoff and pollution in the rural landscape using a Catchment Systems Engineering approach. Sci. Total Environ. 2014, 468–469, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Schroeter, K.; Kreibich, H.; Vogel, K.; Riggelsen, C.; Scherbaum, F.; Merz, B. How useful are complex flood damage models? Water Resour. Res. 2014, 50, 3378–3395. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Li, Q.; Liu, X.; Zhang, J. Quantifying the effect on flood regime of land-use pattern changes via hydrological simulation in the upper Huaihe River basin, China. Nat. Hazards 2016, 84, 2279–2297. [Google Scholar] [CrossRef]
- Zope, P.E.; Eldho, T.I.; Jothiprakash, V. Hydrological impacts of land use-land cover change and detention basins on urban flood hazard: A case study of Poisar River basin, Mumbai, India. Nat. Hazards 2017, 87, 1267–1283. [Google Scholar] [CrossRef]
- Ozturk, M.; Copty, N.K.; Saysel, A.K. Modeling the impact of land use change on the hydrology of a rural watershed. J. Hydrol. 2013, 497, 97–109. [Google Scholar] [CrossRef]
- Zhang, L.; Karthikeyan, R.; Bai, Z.; Srinivasan, R. Analysis of streamflow responses to climate variability and land use change in the Loess Plateau region of China. Catena 2017, 154, 1–11. [Google Scholar] [CrossRef]
- Persichillo, M.G.; Bordoni, M.; Meisina, C. The role of land use changes in the distribution of shallow landslides. Sci. Total Environ. 2017, 574, 924–937. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guan, D.; Jin, C.; Wang, A.; Wu, J.; Yuan, F. Impacts of climate change and land use change on runoff of forest catchment in northeast China. Hydrol. Process. 2012, 28, 186–196. [Google Scholar] [CrossRef]
- Khoi, D.N.; Suetsugi, T. The responses of hydrological processes and sediment yield to land use and climate change in the Be River Catchment, Vietnam. Hydrol. Process. 2012, 28, 640–652. [Google Scholar] [CrossRef]
- Sun, N.; Yearsley, J.; Baptiste, M.; Cao, Q.; Lettenmaier, D.P.; Nijssen, B. A spatially distributed model for assessment of the effects of changing land use and climate on urban stream quality. Hydrol. Process. 2016, 30, 4779–4798. [Google Scholar] [CrossRef]
- Chaves, J.; Neill, C.; Germer, S.; Neto, S.G.; Krusche, A.; Elsenbeer, H. Land management impacts on runoff sources in small Amazon watersheds. Hydrol. Process. 2008, 22, 1766–1775. [Google Scholar] [CrossRef]
- Yira, Y.; Diekkruger, B.; Steup, G.; Bossa, A.Y. Modeling land use change impacts on water resources in a tropical West African catchment (Dano, Burkina Faso). J. Hydrol. 2016, 537, 187–199. [Google Scholar] [CrossRef]
- Semenova, O.; Beven, K. Barriers to progress in distributed hydrological modelling. Hydrol. Process. 2015, 29, 2074–2078. [Google Scholar] [CrossRef] [Green Version]
- Siriwardena, L.; Finlayson, B.L.; Mcmahon, T.A. The impact of land use change on catchment hydrology in large catchments: The Comet River, Central Queensland, Australia. J. Hydrol. 2006, 326, 199–214. [Google Scholar] [CrossRef]
- Liu, Y.B.; Gebremeskel, S.; de Smedt, F.; Hoffmann, L.; Pfister, L. Predicting storm runoff from different land use classes using a geographical information system-based distributed model. Hydrol. Process. 2006, 20, 533–548. [Google Scholar] [CrossRef]
- Notter, B.; Macmillan, L.; Viviroli, D.; Weingartner, R.; Liniger, H.P. Impacts of environmental change on water resources in the Mt. Kenya region. J. Hydrol. 2007, 343, 266–278. [Google Scholar] [CrossRef]
- Qi, S.; Sun, G.; Wang, Y.; Mcnulty, S.G.; Myers, J.A.M. Streamflow response to climate and land use changes in a coastal watershed in North Carolina. Trans. ASABE 2009, 52, 739–749. [Google Scholar] [CrossRef]
- Stoll, S.; Franssen, H.J.H.; Butts, M.; Kinzelbach, W. Analysis of the impact of climate change on groundwater related hydrological fluxes: A multi-model approach including different downscaling methods. Hydrol. Earth Syst. Sci. Discuss. 2010, 7, 7521–7561. [Google Scholar] [CrossRef]
- Yan, B.; Fang, N.F.; Zhang, P.C.; Shi, Z.H. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J. Hydrol. 2013, 484, 26–37. [Google Scholar] [CrossRef]
- Niraula, R.; Meixner, T.; Norman, L.M. Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes. J. Hydrol. 2015, 522, 439–451. [Google Scholar] [CrossRef]
- Marhaento, H.; Booij, M.J.; Rientjes, T.H.M.; Hoekstra, A.Y. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrol. Process. 2017, 31, 2029–2040. [Google Scholar] [CrossRef]
- Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Future climate and land uses effects on flow and nutrient loads of a Mediterranean catchment in South Australia. Sci. Total Environ. 2017, 590–591, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Xia, X.; Hou, J. Catchment-scale High-resolution Flash Flood Simulation Using the GPU-based Technology. Procedia Eng. 2016, 154, 975–981. [Google Scholar] [CrossRef]
- Xia, X.; Liang, Q.; Ming, X.; Hou, J. An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations. Water Resour. Res. 2017, 53, 3730–3759. [Google Scholar] [CrossRef] [Green Version]
- Liang, Q.; Marche, F. Numerical resolution of well-balanced shallow water equations with complex source terms. Adv. Water Resour. 2009, 32, 873–884. [Google Scholar] [CrossRef]
- Liang, Q. Flood simulation using a well-balanced shallow flow model. J. Hydraul. Eng. 2010, 136, 669–675. [Google Scholar] [CrossRef]
- Hou, J.; Simons, F.; Mahgoub, M.; Hinkelmann, R. A robust well-balanced model on unstructured grids for shallow water flows with wetting and drying over complex topography. Comput. Methods Appl. Mech. Eng. 2013, 257, 126–149. [Google Scholar] [CrossRef]
- Overton, D.E.; Brakensiek, D.L. A kinematic model of surface runoff response. In Proceedings of the Wellington Symposium; Unesco/IAHS: Paris, France, 1970; pp. 100–112. [Google Scholar]
- Engman, E.T. Roughness Coefficients for Routing Surface Runoff. J. Irrig. Drain. Eng. 1986, 112, 39–53. [Google Scholar] [CrossRef]
- Li, G. Comparative Study of Soil Infiltration under Different Land Uses in Loess Hilly Regions; Northwest A&F University: Yangling, China, 2007. (In Chinese) [Google Scholar]
- Reaney, S.M.; Bracken, L.J.; Kirkby, M.J. The importance of surface controls on overland flow connectivity in semi-arid environments: Results from a numerical experimental approach. Hydrol. Process. 2014, 28, 2116–2128. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Shao, D. A New Generation of Urban Rainstorm Intensity Formula China; China Architecture & Building Press: Beijing, China, 2014; p. 82. ISBN 978-7-112-16847-7. [Google Scholar]
- Giammarco, P.D.; Todini, E.; Lamberti, P. A conservative finite elements approach to overland flow: The control volume finite element formulation. J. Hydrol. 1996, 175, 267–291. [Google Scholar] [CrossRef]
- Simons, F.; Busse, T.; Hou, J.; Özgen, I.; Hinkelmann, R. A model for overland flow and associated processes within the Hydroinformatics Modelling System. J. Hydroinform. 2014, 16, 375–391. [Google Scholar] [CrossRef]
- Singh, J.; Altinakar, M.S.; Ding, Y. Two-dimensional numerical modeling of dam-break flows over natural terrain using a central explicit scheme. Adv. Water Resour. 2011, 34, 1366–1375. [Google Scholar] [CrossRef]
Land Use | Bare Land | Forest | Grass Land |
---|---|---|---|
Infiltration rate (mm/h) | 2.480 | 4.120 | 3.250 |
Manning (s/m1/3) | 0.044 | 0.200 | 0.059 |
i1 | Return Period of Rainfall | Peak Discharge (m3/s) | ||
---|---|---|---|---|
Case 1 | Case 2 | Case 3 | ||
2 | 15.81 | 14.70 | 18.28 | |
10 | 33.76 | 32.43 | 38.22 | |
50 | 54.01 | 51.73 | 59.82 | |
100 | 63.07 | 60.43 | 69.41 | |
2 | 17.03 | 15.59 | 19.63 | |
10 | 35.62 | 33.24 | 40.06 | |
50 | 57.27 | 52.93 | 62.71 | |
100 | 66.93 | 61.88 | 72.99 | |
2 | 11.41 | 12.65 | 10.74 | |
10 | 27.93 | 29.36 | 25.39 | |
50 | 47.15 | 48.35 | 43.41 | |
100 | 56.10 | 57.05 | 50.93 | |
2 | 10.52 | 11.22 | 8.06 | |
10 | 26.03 | 27.24 | 20.52 | |
50 | 44.40 | 45.85 | 34.28 | |
100 | 52.06 | 53.55 | 39.77 |
i1 | Return Period of Rainfall | Water Level Peak Values (m3/s) | ||
---|---|---|---|---|
Case 1 | Case 2 | Case 3 | ||
2 | 80.06 | 80.05 | 80.15 | |
10 | 80.69 | 80.71 | 80.81 | |
50 | 81.30 | 81.34 | 81.44 | |
100 | 81.57 | 81.61 | 81.71 | |
2 | 79.77 | 79.53 | 79.83 | |
10 | 80.10 | 80.07 | 80.17 | |
50 | 80.39 | 80.34 | 80.46 | |
100 | 80.51 | 80.45 | 80.59 | |
2 | 79.71 | 79.72 | 79.69 | |
10 | 79.89 | 79.90 | 79.85 | |
50 | 80.05 | 80.06 | 80.00 | |
100 | 80.12 | 80.12 | 80.05 | |
2 | 79.83 | 79.84 | 79.80 | |
10 | 79.99 | 80.00 | 79.94 | |
50 | 80.14 | 80.15 | 80.06 | |
100 | 80.19 | 80.20 | 80.10 |
Land Use | Bare Land | Orchard | Forest | Grass Land | Transportation Land | Terrace | Terrace Orchard | Water |
---|---|---|---|---|---|---|---|---|
Infiltration rate (mm/h) | 2.48 | 3.12 | 4.12 | 3.25 | 0.00 | 2.60 | 4.00 | 0.00 |
Manning (s/m1/3) | 0.04 | 0.15 | 0.20 | 0.06 | 0.01 | 0.18 | 0.16 | 0.03 |
Return Period of Rainfall | Peak Discharge (m3/s) | ||
---|---|---|---|
Case 1 | Case 2 | Case 3 | |
2 | 2.28 | 2.29 | 2.00 |
10 | 21.91 | 21.98 | 19.95 |
50 | 36.48 | 36.58 | 31.73 |
100 | 48.21 | 48.41 | 42.45 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Guo, K.; Liu, F.; Han, H.; Liang, Q.; Tong, Y.; Li, P. Assessing Slope Forest Effect on Flood Process Caused by a Short-Duration Storm in a Small Catchment. Water 2018, 10, 1256. https://doi.org/10.3390/w10091256
Hou J, Guo K, Liu F, Han H, Liang Q, Tong Y, Li P. Assessing Slope Forest Effect on Flood Process Caused by a Short-Duration Storm in a Small Catchment. Water. 2018; 10(9):1256. https://doi.org/10.3390/w10091256
Chicago/Turabian StyleHou, Jingming, Kaihua Guo, Feifei Liu, Hao Han, Qiuhua Liang, Yu Tong, and Peng Li. 2018. "Assessing Slope Forest Effect on Flood Process Caused by a Short-Duration Storm in a Small Catchment" Water 10, no. 9: 1256. https://doi.org/10.3390/w10091256
APA StyleHou, J., Guo, K., Liu, F., Han, H., Liang, Q., Tong, Y., & Li, P. (2018). Assessing Slope Forest Effect on Flood Process Caused by a Short-Duration Storm in a Small Catchment. Water, 10(9), 1256. https://doi.org/10.3390/w10091256