Thermal and Hydrodynamic Changes under a Warmer Climate in a Variably Stratified Hypereutrophic Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Study Design
2.3. Model Input and Calibration Data
2.4. Model Parameterization and Calibration
2.5. Climate Warming Scenarios
2.6. Data Analysis
2.6.1. Reservoir Temperature and Stability
2.6.2. Multiple Regression Models of Controls on Temperature and Stability
3. Results and Discussion
3.1. Model Calibration
3.2. Higher Rates of Evaporation under Warming Scenarios
3.3. A Warmer Thermal Regime
3.4. Stability and Stratification
3.5. Implications of Changes to the Hydrodynamic Regime
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Time Series of Inflow, Outflow, and the Reservoir Water Balance
Appendix A.2. Bathymetry and the Depth-Area-Volume Relationship
Appendix A.3. Meteorological Data
Appendix A.4. Model Calibration for Low Water Years (2002 to 2004)
References
- Beutel, M.; Hannoun, I.; Pasek, J.; Bowman Kavanagh, K. Evaluation of hypolimnetic oxygen demand in a large eutrophic raw water reservoir, San Vicente Reservoir. Calif. J. Environ. Eng. 2007, 133, 130–138. [Google Scholar] [CrossRef]
- Kraemer, B.M.; Anneville, O.; Chandra, S.; Dix, M.; Kuusisto, E.; Livingstone, D.M.; Rimmer, A.; Schladow, S.G.; Silow, E.; Sitoki, L.M.; et al. Morphometry and average temperature affect lake stratification responses to climate change. Geophys. Res. Lett. 2015, 42, 4981–4988. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Hondzo, M.; Stefan, H.G. Regional water temperature characteristics of lakes subjected to climate change. Clim. Chang. 1993, 24, 187–211. [Google Scholar] [CrossRef]
- Fang, X.; Stefan, H.G. Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous United States under past and future climate scenarios. Limnol. Oceanogr. 2009, 54, 2359–2370. [Google Scholar] [CrossRef]
- Wang, S.; Qian, X.; Han, B.-P.; Luo, L.-C.; Hamilton, D.P. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China. Water Res. 2012, 46, 2591–2604. [Google Scholar] [CrossRef] [PubMed]
- Kerimoglu, O.; Rinke, K. Stratification dynamics in a shallow reservoir under different hydro-meteorological scenarios and operational strategies. Water Resour. Res. 2013, 49, 7518–7527. [Google Scholar] [CrossRef] [Green Version]
- Butcher, J.B.; Nover, D.; Johnson, T.E.; Clark, C.M. Sensitivity of lake thermal and mixing dynamics to climate change. Clim. Chang. 2015, 129, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Søndergaard, M.; Jensen, J.P.; Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 2003, 506, 135–145. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, D.; Chen, Y.; Fang, X.; Liu, Z.; Ma, W. Simulating and understanding effects of water level fluctuations on thermal regimes in Miyun Reservoir. Hydrolog. Sci. J. 2014, 61, 952–969. [Google Scholar] [CrossRef]
- Lee, R.M.; Biggs, T.W. Impacts of land use, climate variability, and management on thermal structure, anoxia, and transparency in hypereutrophic urban water supply reservoirs. Hydrobiologia 2015, 745, 263–284. [Google Scholar] [CrossRef]
- Blenckner, T.; Omstedt, A.; Rummukainen, M. A Swedish case study of contemporary and possible future consequences of climate change on lake function. Aquat. Sci. 2002, 64, 171–184. [Google Scholar] [CrossRef]
- Peeters, F.; Livingstone, D.M.; Goudsmit, G.-H.; Kipfer, R.; Forster, R. Modeling 50 years of historical temperature profiles in a large central European lake. Limnol. Oceanogr. 2002, 47, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, E.; Fukushima, T.; Harasawa, H. A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecol. Modell. 2007, 209, 351–366. [Google Scholar] [CrossRef]
- Saloranta, T.M.; Forsius, M.; Järvinen, M.; Arvola, L. Impacts of projected climate change on the thermodynamics of a shallow and a deep lake in Finland: Model simulations and Bayesian uncertainty analysis. Hydrol. Res. 2009, 40, 234–247. [Google Scholar] [CrossRef]
- Samal, N.R.; Pierson, D.C.; Schneiderman, E.; Huang, Y.; Read, J.S.; Anandhi, A.; Owens, E.M. Impact of climate change on Cannonsville Reservoir thermal structure in the New York City water supply. Water Qual. Res. J. Can. 2012, 47, 389–405. [Google Scholar] [CrossRef]
- Weinberger, S.; Vetter, M. Using the hydrodynamic model DYRESM based on results of a regional climate model to estimate water temperature changes at Lake Ammersee. Ecol. Modell. 2012, 244, 38–48. [Google Scholar] [CrossRef]
- Modiri-Gharehveran, M.; Etemad-Shahidi, A.; Jabbari, E. Effects of climate change on the thermal regime of a reservoir. P. I. Civil Eng. 2014, 167, 601–611. [Google Scholar] [CrossRef]
- Nürnberg, G.K. Quantifying anoxia in lakes. Limnol. Oceanogr. 1995, 40, 1100–1111. [Google Scholar] [CrossRef]
- Cole, T.M.; Wells, S.A. CE-QUAL-W2—A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water-Quality Model, Version 3.7; Instruction Report EL-11-1; U.S. Army Corps of Engineers: Washington, DC, USA, 2011.
- Anandhi, A.; Frei, A.; Pierson, D.C.; Schneiderman, E.M.; Zion, M.S.; Lounsbury, D.; Matonse, A.H. Examination of change factor methodologies for climate change impact assessment. Water Resour. Res. 2011, 47, W03501. [Google Scholar] [CrossRef]
- Mohseni, O.; Erickson, T.R.; Stefan, H.G. Sensitivity of stream temperatures in the United States to air temperatures projected under a global warming scenario. Water Resour. Res. 1999, 35, 3723–3733. [Google Scholar] [CrossRef] [Green Version]
- Morrill, J.C.; Bales, R.C.; Conklin, M.H. Estimating stream temperature from air temperature: Implications for future water quality. J. Environ. Eng. 2005, 131, 139–146. [Google Scholar] [CrossRef]
- Fang, X.; Stefan, H.G. Temperature variability in lake sediments. Water Resour. Res. 1998, 34, 717–729. [Google Scholar] [CrossRef] [Green Version]
- Wells, S.; (Portland State University, Portland, OR, USA). Personal communication, 2016.
- Cyr, H. Temperature variability in shallow littoral sediments of Lake Opeongo (Canada). Freshw. Sci. 2012, 31, 895–907. [Google Scholar] [CrossRef]
- Pasek, J.; (San Diego Public Utilities Department, San Diego, CA, USA). Personal communication, 2015.
- Poole, H.H.; Atkins, W.R. Photo-electric measurements of submarine illumination throughout the year. J. Mar. Biol. Assoc. UK 1929, 16, 297–324. [Google Scholar] [CrossRef]
- Armengol, J.; Caputo, L.; Comerma, M.; Feijoó, C.; García, J.C.; Marcé, R.; Navarro, E.; Ordoñez, J. Sau reservoir’s light climate: Relationships between Secchi depth and light extinction coefficient. Limnetica 2003, 22, 195–210. [Google Scholar]
- Likens, G.E. Primary Production of Inland Aquatic Ecosystems. In Primary Productivity of the Biosphere; Lieth, H., Whittaker, R.H., Eds.; Springer: New York, NY, USA, 1975; Volume 14, pp. 185–202. [Google Scholar]
- Edinger, J.E.; Brady, D.K.; Geyer, J.C. Heat Exchange and Transport in the Environment; Report No. 14; Cooling Water Studies for the Electric Power Research Institute: Palo Alto, CA, USA, 1974. [Google Scholar]
- Cayan, D.R.; Maurer, E.P.; Dettinger, M.D.; Tyree, M.; Hayhoe, K. Climate change scenarios for the California region. Clim. Chang. 2008, 87, 21–42. [Google Scholar] [CrossRef]
- Nakicenovic, N.; Alcamo, J.; Grubler, A.; Riahi, K.; Roehrl, R.A.; Rogner, H.H.; Victor, N. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed.; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Idso, S.B. Concept of lake stability. Limnol. Oceanogr. 1973, 18, 681–683. [Google Scholar] [CrossRef]
- Maidment, D.R. Handbook of Hydrology; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Lindeman, R.H.; Merenda, P.F.; Gold, R.Z. Introduction to Bivariate and Multivariate Analysis; Scott Foresman: Glenview, IL, USA, 1980. [Google Scholar]
- Grömping, U. Relative importance for linear regression in R: The package relaimpo. J. Stat. Softw. 2006, 17, 1–27. [Google Scholar] [CrossRef]
- Zhu, T.; Jenkins, M.W.; Lund, J.R. Estimated impacts of climate warming on California water availability under twelve future climate scenarios. J. Am. Water Resour. Assoc. 2005, 41, 1027–1038. [Google Scholar] [CrossRef]
- Likens, G.E.; Johnson, N.M. Measurement and analysis of the annual heat budget for the sediments in two Wisconsin lakes. Limnol. Oceanogr. 1969, 14, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Brasil, J.; Attayde, J.L.; Vasconcelos, F.R.; Dantas, D.D.F.; Huszar, V.L.M. Drought-induced water-level reduction favors cuanobacteria blooms in tropical shallow lakes. Hydrobiologia 2016, 770, 145–164. [Google Scholar] [CrossRef]
- Pettersson, K. Mechanisms for internal loading of phosphorus in lakes. Hydrobiologia 1998, 373, 21–25. [Google Scholar] [CrossRef]
- Duan, S.; Kaushal, S.S.; Groffman, P.M.; Band, L.E.; Belt, K.T. Phosphorus export across an urban to rural gradient in the Chesapeake Bay watershed. J. Geophys. Res. Biogeosci. 2012, 117, G01025. [Google Scholar] [CrossRef]
- Lewis W.M., Jr. A revised classification of lakes based on mixing. Can. J. Fish. Aquat. Sci. 1983, 40, 1779–1787. [Google Scholar] [CrossRef]
- Rodusky, A.J.; Sharfstein, B.; Jin, K.-R.; East, T.L. Thermal stratification and the potential for enhanced phosphorus release from the sediments in Lake Okeechobee, USA. Lake Reserv. Manag. 2005, 21, 330–337. [Google Scholar] [CrossRef]
- Brown, R.; Huber, A.; Zhou, J.; Steele, K. Planning Water Quality Operations for San Diego County Water Authority Emergency Storage Project Reservoirs. In Building Partnerships; American Society of Civil Engineers: New York, NY, USA, 2000; pp. 1–12. [Google Scholar]
- White, E. Effects of Threadfin Shad, Dorosoma Petenense, on Largemouth Bass, Micropterus Salmoides, and Zooplankton in San Diego County Reservoirs. Master’s Thesis, San Diego State University, San Diego, CA, USA, 1991. [Google Scholar]
- Welch, E.B.; Cooke, G.D. Internal phosphorus loading in shallow lakes: Importance and control. Lake Reserv. Manag. 1995, 11, 273–281. [Google Scholar] [CrossRef]
- Naselli-Flores, L.; Barone, R. Phytoplankton dynamics and structure: A comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia 2000, 438, 65–74. [Google Scholar] [CrossRef]
- Zohary, T.; Ostrovsky, I. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inl. Waters 2011, 1, 47–59. [Google Scholar] [CrossRef]
- Kirillin, G. Modeling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes. Boreal Environ. Res. 2010, 15, 279–293. [Google Scholar]
- O’Hara, J.K.; Georgakakos, K.R. Quantifying the urban water supply impacts of climate change. Water Resour. Manag. 2008, 22, 1477–1497. [Google Scholar] [CrossRef]
- California Irrigation Management Information System Climate Data. Available online: https://cimis.water.ca.gov/ (accessed on 4 February 2013).
- U.S. Environmental Protectioin Agency Cloud Cover Data. Available online: https://www.epa.gov/exposure-assessment-models/basins-meterological-data (accessed on 27 April 2013).
Time Period | PCM | GFDL | ||
---|---|---|---|---|
B1 | A2 | B1 | A2 | |
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | |
Spring/Autumn | 0.8 | 1.2 | 2.1 | 2.3 |
Summer | 0.8 | 1.3 | 2.3 | 3.1 |
Winter | 0.6 | 1.0 | 1.6 | 1.7 |
Annual (weighted average) | 0.8 | 1.2 | 2.0 | 2.4 |
Observed | No change | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | |
---|---|---|---|---|---|---|
(m) | 7.5 | 7.5 | −0.04 | −0.05 | −0.09 | −0.09 |
(m) | 4.5 | 4.4 | −0.08 | −0.20 | −0.25 | −0.24 |
E (cm) | 151.7 | 157.2 | 3.5 | 5.2 | 9.0 | 10.2 |
ENS (cm) | 166.9 | 169.3 | 7.7 | 13.6 | 26.1 | 25.9 |
LE (m) | 4.2 | 3.1 | 0.0 | 0.0 | −0.1 | −0.1 |
LH (m) | 14.5 | 13.5 | −0.1 | −0.2 | −0.4 | −0.4 |
ZT (m) | 6.5 | 6.0 | −0.1 | −0.1 | −0.1 | −0.1 |
TR (°C) | 17.6 | 17.9 | 0.5 | 0.8 | 1.3 | 1.5 |
TR-W (°C) | 14.4 | 14.6 | 0.5 | 0.8 | 1.3 | 1.5 |
TR-NS (°C) | 18.7 | 18.4 | 0.6 | 0.9 | 1.6 | 1.8 |
TE (°C) | 23.1 | 24.4 | 0.4 | 0.7 | 1.2 | 1.5 |
TH (°C) | 14.1 | 14.2 | 0.4 | 0.6 | 1.0 | 1.1 |
S (J m−2) | 173.7 | 168.4 | 6.1 | 9.3 | 17.4 | 23.6 |
SW (J m−2) | 36.7 | 28.3 | 2.6 | 3.8 | 7.2 | 8.0 |
SNS (J m−2) | 13.3 | 14.2 | 0.1 | −0.1 | −0.1 | 1.1 |
STRON (day of year) | 85 | 91 | −4 | −5 | −7 | −9 |
STRDUR (day) | 220 | 209 | 6 | 8 | 12 | 14 |
Response Variable | β | LMG | Adj. R2 | RMSE | ||||
---|---|---|---|---|---|---|---|---|
TE | LH | TE | LH | |||||
TH | 0.75 *** | 0.27 *** | 0.66 | 0.03 | 0.68 | 0.26 | ||
TA | TH | TA | TH | |||||
S | 17.45 *** | 65.20 *** | −11.22 *** | 0.67 | 0.09 | 0.11 | 0.86 | 3.20 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, R.M.; Biggs, T.W.; Fang, X. Thermal and Hydrodynamic Changes under a Warmer Climate in a Variably Stratified Hypereutrophic Reservoir. Water 2018, 10, 1284. https://doi.org/10.3390/w10091284
Lee RM, Biggs TW, Fang X. Thermal and Hydrodynamic Changes under a Warmer Climate in a Variably Stratified Hypereutrophic Reservoir. Water. 2018; 10(9):1284. https://doi.org/10.3390/w10091284
Chicago/Turabian StyleLee, Raymond Mark, Trent Wade Biggs, and Xing Fang. 2018. "Thermal and Hydrodynamic Changes under a Warmer Climate in a Variably Stratified Hypereutrophic Reservoir" Water 10, no. 9: 1284. https://doi.org/10.3390/w10091284
APA StyleLee, R. M., Biggs, T. W., & Fang, X. (2018). Thermal and Hydrodynamic Changes under a Warmer Climate in a Variably Stratified Hypereutrophic Reservoir. Water, 10(9), 1284. https://doi.org/10.3390/w10091284