Real-Time Integrated Operation for Urban Streams with Centralized and Decentralized Reservoirs to Improve System Resilience
Abstract
:1. Introduction
2. Materials and Methodologies
2.1. Integrated Operation Considering Urban Streams
2.2. Integrated Pump Operation
2.3. Revised Resilience Index
2.4. Selection of Monitoring Nodes
2.5. Model Formulation
2.6. Study Area
2.7. Generation of Synthetic Rainfall Data
3. Application and Results
3.1. Selecting Monitoring Nodes in Each Drainage Area and Stream
3.2. Results of the Rainfall Runoff Simulation
4. Conclusions
- The first highlight in this study is the difference between the current operation and the integrated operation in urban streams with pump stations/decentralized reservoirs. The current operation is based on the vertical/one-way network and the integrated operation is based on the horizontal/interactive network. In the integrated operation, the operation of one drainage facility needs the information of the urban stream, and other drainage facilities also require the information of the urban stream. Furthermore, the urban stream is affected by the discharge of upstream drainage facilities. Therefore, information of all drainage facilities in a target area should be collected in the integrated operation with a horizontal/interactive network.
- The second highlight is the effect of the integrated operation. The integrated operation was applied to two historical events (2010, 2011). The duration of the 2010 event (1000 min) is shorter than that of the 2011 event (2500 min). As the results of the flooding volume and system resilience indicate, the effect of integrated operation in 2011 is greater than that in 2011. It means that the integrated operation can be more effective in a rainfall event with a long duration. Consequently, the effect of the integrated operation can vary greatly depending on the operating time.
- The third highlight is the system resilience by previous resilience indices and the revised resilience index. The system resilience in the revised resilience index in both operations is relatively low because all values are not over 0.3. The absolute difference of system resilience in both operations is small, but the relative difference is improved because the improvement of system resilience in the 2010 and 2011 events is 20% and 267%, respectively.
- Finally, the results of this study will enable the evaluation of urban watershed management and the application of structural and nonstructural measures in urban areas. The integrated operation constitutes a nonstructural measure for reducing urban inundation and managing drainage facilities by considering the status of urban streams. The revised resilience index will be useful in establishing a policy regarding structural and nonstructural measures, such as the installation and operation of drainage facilities in urban areas. The integrated operation approach and revised resilience index will also help in the construction of a resilient city, which has recently attracted attention. Future research will be required regarding the operation of drainage facilities in metropolitan cities and the evaluation of flooding damage.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Galelli, S.; Goedbloed, A.; Schwanenberg, D.; van Overloop, P.J. Optimal real-time operation of multipurpose urban reservoirs: Case study in Singapore. J. Water Res. Plan.-ASCE 2012, 140, 511–523. [Google Scholar] [CrossRef]
- Zacharof, A.I.; Butler, D.; Schütze, M.; Beck, M.B. Screening for real-time control potential of urban wastewater systems. J. Hydrol. 2004, 299, 349–362. [Google Scholar] [CrossRef]
- Beeneken, T.; Erbe, V.; Messmer, A.; Reder, C.; Rohlfing, R.; Scheer, M.; Schuetze, M.; Schumacher, B.; Weilandt, M.; Weyand, M. Real time control (RTC) of urban drainage systems—A discussion of the additional efforts compared to conventionally operated systems. Urban Water J. 2013, 10, 293–299. [Google Scholar] [CrossRef]
- Cembrano, G.; Quevedo, J.; Salamero, M.; Puig, V.; Figueras, J.; Martı, J. Optimal control of urban drainage systems. A case study. Control Eng. Pract. 2004, 12, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.S.; Huang, C.L.; Wei, C.C. Intelligent real-time operation of a pumping station for an urban drainage system. J. Hydrol. 2013, 489, 85–97. [Google Scholar] [CrossRef]
- Schütze, M.; Campisano, A.; Colas, H.; Schilling, W.; Vanrolleghem, P.A. Real time control of urban wastewater systems—where do we stand today? J. Hydrol. 2004, 299, 335–348. [Google Scholar] [CrossRef]
- Xu, W.D.; Fletcher, T.D.; Duncan, H.P.; Bergmann, D.J.; Breman, J.; Burns, M.J. Improving the multi-objective performance of rainwater harvesting systems using real-time control technology. Water 2018, 10, 147. [Google Scholar] [CrossRef]
- Raimondi, A.; Becciu, G. On pre-filling probability of flood control detention facilities. Urban Water J. 2015, 12, 344–351. [Google Scholar] [CrossRef]
- Sweetapple, C.; Astaraie-Imani, M.; Butler, D. Design and operation of urban wastewater systems considering reliability, risk and resilience. Water Res. 2018, 147, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Lee, Y.S.; Joo, J.G.; Jung, D.; Kim, J.H. Investigating the impact of proactive pump operation and capacity expansion on urban drainage system resilience. J. Water Resour. Plan. Manag. 2017, 143, 04017024. [Google Scholar] [CrossRef]
- Tamoto, N.; Endo, J.; Yoshimoto, K.; Yoshida, T.; Sakakibara, T. Forecast-based operation method in minimizing flood damage in urban area. In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, UK, 31 August–5 September 2008; Volume 31. [Google Scholar]
- Lund, N.S.V.; Falk, A.K.V.; Borup, M.; Madsen, H.; Steen Mikkelsen, P. Model predictive control of urban drainage systems: A review and perspective towards smart real-time water management. Crit. Rev. Environ. Sci. Technol. 2018, 48, 1–61. [Google Scholar] [CrossRef]
- Fiorelli, D.; Schutz, G.; Klepiszewski, K.; Regneri, M.; Seiffert, S. Optimised real time operation of a sewer network using a multi-goal objective function. Urban Water J. 2013, 10, 342–353. [Google Scholar] [CrossRef]
- Hsu, M.H.; Chen, S.H.; Chang, T.J. Inundation simulation for urban drainage basin with storm sewer system. J. Hydrol. 2000, 234, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Kroll, S.; Fenu, A.; Wambecq, T.; Weemaes, M.; Van Impe, J.; Willems, P. Energy optimization of the urban drainage system by integrated real-time control during wet and dry weather conditions. Urban Water J. 2018, 15, 1–9. [Google Scholar] [CrossRef]
- Lee, E.H.; Lee, Y.S.; Joo, J.G.; Jung, D.; Kim, J.H. Flood reduction in urban drainage systems: Cooperative operation of centralized and decentralized reservoirs. Water 2016, 8, 469. [Google Scholar] [CrossRef]
- Pleau, M.; Colas, H.; Lavallée, P.; Pelletier, G.; Bonin, R. Global optimal real-time control of the Quebec urban drainage system. Environ. Modell. Softw. 2005, 20, 401–413. [Google Scholar] [CrossRef]
- Vanrolleghem, P.A.; Benedetti, L.; Meirlaen, J. Modelling and real-time control of the integrated urban wastewater system. Environ. Modell. Softw. 2005, 20, 427–442. [Google Scholar] [CrossRef]
- Haughton, G. Developing sustainable urban development models. Cities 2007, 14, 189–195. [Google Scholar] [CrossRef]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Pickett, S.T.; Cadenasso, M.L.; Grove, J.M. Resilient cities: Meaning, models, and metaphor for integrating the ecological, socio-economic, and planning realms. Landsc. Urban Plan. 2004, 69, 369–384. [Google Scholar] [CrossRef]
- Egger, S. Determining a sustainable city model. Environ. Modell. Softw. 2006, 21, 1235–1246. [Google Scholar] [CrossRef]
- Blackmore, J.M.; Plant, R.A. Risk and resilience to enhance sustainability with application to urban water systems. J. Water Resour. Plan. Manag. 2008, 134, 224–233. [Google Scholar] [CrossRef]
- Butler, D.; Farmani, R.; Fu, G.; Ward, S.; Diao, K.; Astaraie-Imani, M. A new approach to urban water management: Safe and sure. Procedia Eng. 2014, 89, 347–354. [Google Scholar] [CrossRef]
- Mugume, S.N.; Gomez, D.E.; Fu, G.; Farmani, R.; Butler, D. A global analysis approach for investigating structural resilience in urban drainage systems. Water Res. 2015, 81, 15–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siekmann, T.; Siekmann, M. Resilient urban drainage—Options of an optimized area-management. Urban Water J. 2015, 12, 44–51. [Google Scholar] [CrossRef]
- Mugume, S.N.; Butler, D. Evaluation of functional resilience in urban drainage and flood management systems using a global analysis approach. Urban Water J. 2016, 14, 1–10. [Google Scholar] [CrossRef]
- Todini, E. Looped water distribution networks design using a resilience index based heuristic approach. Urban Water J. 2000, 2, 115–122. [Google Scholar]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Winterfeldt, D. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra. 2003, 19, 733–752. [Google Scholar] [CrossRef]
- Godshalk, D. Urban hazard mitigation: Creating resilient cities. Nat. Hazards Rev. 2003, 4, 136–143. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure, and Transport of the Korean government. River Management Plan for Dorim Stream; Ministry of Land, Infrastructure, and Transport of the Korean government: Seoul, Korea, 2002.
- United States Environmental Protection Agency. Storm Water Management Model user’s Manual Version 5.0. EPA; United States Environmental Protection Agency: Washington, DC, USA, 2010.
- Seoul Metropolitan Government. Report on Design and Expansion of Guro1 Pump Station; Seoul Metropolitan Government: Seoul, Korea, 2010.
- Seoul Metropolitan Government. Report on Design and Expansion of Guro2 Pump Station; Seoul Metropolitan Government: Seoul, Korea, 2010.
- Seoul Metropolitan Government. Report on Design and Expansion of Guro3 Pump Station; Seoul Metropolitan Government: Seoul, Korea, 2010.
- Seoul Metropolitan Government. Report on Design and Expansion of Guro4 Pump Station; Seoul Metropolitan Government: Seoul, Korea, 2010.
- Seoul Metropolitan Government. Report on Design and Expansion of Mullae Pump Station; Seoul Metropolitan Government: Seoul, Korea, 2010.
- Seoul Metropolitan Government. Report on Design and Expansion of Dorim2 Pump Station; Seoul Metropolitan Government: Seoul, Korea, 2010.
- Seoul Metropolitan Government. Report on Design of Daerim2 Pump Station; Seoul Metropolitan Government: Seoul, Korea, 2010.
- Seoul Metropolitan Government. Report on Design and Expansion of Daerim3 Pump Station; Seoul Metropolitan Government: Seoul, Korea, 2010.
- Seoul Metropolitan Government. Report on Design and Expansion of Sinlim1 Pump Station; Seoul Metropolitan Government: Seoul, Korea, 2012.
- Seoul Metropolitan Government. Report on Design of Sinlim2 Pump Station; Seoul Metropolitan Government: Seoul, Korea, 2012.
- Seoul Metropolitan Government. Report on Design of Sinlim5 Pump Station; Seoul Metropolitan Government: Seoul, Korea, 2012.
- Seoul Metropolitan Government. Report on Design of Gwanak Detention Reservoir; Seoul Metropolitan Government: Seoul, Korea, 2013.
- Yeongdeungpo-Gu. Report on Design of Daerim Detention Reservoir; Yeongdeungpo-Gu: Seoul, Korea, 2007. [Google Scholar]
- Ministry of Public Safety and Security. The Disaster Year Book; Ministry of Public Safety and Security: Seoul, Korea, 2010.
- Ministry of Public Safety and Security. The Disaster Year Book; Ministry of Public Safety and Security: Seoul, Korea, 2011.
- Huff, F.A. Time distribution of rainfall in heavy storms. Water Resour. Res. 1967, 3, 1007–1019. [Google Scholar] [CrossRef]
- Yoon, Y.N.; Jung, J.H.; Ryu, J.H. Introduction of design flood estimation. J. Korea Water Resour. Assoc. 2013, 46, 55–68. [Google Scholar]
- Korea Precipitation Frequency Data Server. Available online: www.k-idf.re.kr (accessed on 27 May 2018).
- Lee, E.H.; Kim, J.H. Development of a flood-damage-based flood forecasting technique. J. Hydrol. 2018, 563, 181–194. [Google Scholar] [CrossRef]
Individual Operation | Cooperative Operation in a Single Drainage Area |
---|---|
Beeneken et al. (2013); Cembrano et al. (2004); Galelli et al. (2012); Hsu et al. (2013); Lee et al. (2017); Raimondi and Becciu (2015); Schütze et al. (2004); Sweetapple et al. (2018); Tamoto et al. (2008); Xu et al. (2018); Zacharof et al. (2004) | Fiorelli et al. (2013); Hsu et al. (2000); Kroll (2018); Lee et al. (2016); Lund et al. (2018); Pleau et al. (2005); Vanrolleghem et al. (2005) |
Value of Numerator (Ft) | Value of Denominator (Rt × A) | Status of System | Value of Performance Evaluation Function |
---|---|---|---|
0 | 0 | No failure | 1 |
0 | Over 0 | No failure | 1 |
Over 0 | 0 | Failure | 0 |
Large | Small | Failure | 0 |
Small | Large | Partial Failure |
Stream | River Length (km) | Levee Length (km) | Mean WIDTH of Basin (km, A/L) | Shape Factor (A/L2) | Slope |
---|---|---|---|---|---|
Dorim | 14.2 | 22.2 | 2.95 | 0.21 | 1/1.163~1/142 |
Pump Stations | Capacity of CR in Pump Stations (m3) | Capacity of Drainage Pumps (m3/min) | Drainage Area (ha) | Boundary Water Level |
---|---|---|---|---|
Guro1 | 29,100 | 1750 (245 m3/min × 3, 140 m3/min × 2, 270 m3/min × 2, 55 m3/min × 1) | 136 | HWL: 8.5 m LWL: 6.0 m |
Guro2 | 3500 | 1315 (180 m3/min × 3, 360 m3/min × 2, 55 m3/min × 1) | 47 | HWL: 8.5 m LWL: 6.5 m |
Guro3 | 1400 | 605 (175 m3/min × 3, 40 m3/min × 2) | 45 | HWL: 9.5 m LWL: 6.3 m |
Guro4 | 29,100 | 480 (140 m3/min × 3, 60 m3/min × 1) | 27 | HWL: 9.5 m LWL: 5.0 m |
Sinlim1 | 8000 | 1000 (200 m3/min × 5) | 56 | HWL: 13.7 m LWL: 7.7 m |
Sinlim2 | 5300 | 800 (64 m3/min × 1, 184 m3/min × 4) | 46 | HWL: 13.6 m LWL: 10.5 m |
Sinlim5 | 1000 | 411 (137 m3/min × 3) | 27 | HWL: 18.2 m LWL: 15.6 m |
Mullae | 3400 | 1435 (329 m3/min × 4, 119 m3/min × 1) | 82 | HWL: 7.0 m LWL: 3.7 m |
Dorim2 | 31,000 | 1745 (236 m3/min × 4, 267 m3/min × 3) | 150 | HWL: 9.5 m LWL: 7.3 m |
Daerim2 | 1000 | 336 (336 m3/min × 3) | 19 | HWL: 11.4 m LWL: 8.4 m |
Daerim3 | 36,200 | 3411 (223 m3/min × 7, 150 m3/min × 1, 250 m3/min × 2, 600 m3/min × 2) | 249 | HWL: 9.0 m LWL: 6.8 m |
Detention Reservoirs | Capacity of Decentralized Reservoirs (m3) | Capacity of Drainage Pumps (m3/min) | Inlet Type (B × H) | Effluent Stream |
---|---|---|---|---|
Daerim | 2447 | 18 (9 m3/min × 2) | Weir (2.0 m × 0.4 m) | Sewer network in the Daerim3 pump station |
Gwanak | 65,000 | 12 (4 m3/min × 3) | Flap gate (1.4 m × 1.4 m) | Dorim stream |
Duration (min) | Guro1 (Rainfall Amount) | Guro2 (Rainfall Amount) | Guro3 (Rainfall Amount) | Guro4 (Rainfall Amount) | Sinlim1 (Rainfall Amount) | Sinlim2 (Rainfall Amount) | Sinlim5 (Rainfall Amount) | Mullae (Rainfall Amount) | Dorim2 (Rainfall Amount) | Daerim2 (Rainfall Amount) | Daerim3 (Rainfall Amount) |
---|---|---|---|---|---|---|---|---|---|---|---|
30 | GR1_043 (61 mm) | GR2_082 (72 mm) | GR3_430 (65 mm) | GR4_401 (55 mm) | SL1_810 (28 mm) | SL2_420 (25 mm) | SL5_770 (27 mm) | MR_216 (38 mm) | DO_316 (49 mm) | DR2_331 (54 mm) | DR3_560 (79 mm) |
60 | GR1_043 (83 mm) | GR2_082 (94 mm) | GR3_430 (87 mm) | GR4_401 (76 mm) | SL1_810 (48 mm) | SL2_420 (47 mm) | SL5_770 (47 mm) | MR_216 (58 mm) | DO_316 (71 mm) | DR2_331 (76 mm) | DR3_560 (104 mm) |
90 | GR1_056 (128 mm) | GR2_082 (137 mm) | GR3_430 (133 mm) | GR4_401 (123 mm) | SL1_810 (96 mm) | SL2_420 (93 mm) | SL5_770 (97 mm) | MR_216 (109 mm) | DO_335 (117 mm) | DR2_331 (118 mm) | DR3_575 (154 mm) |
Rainfall Events | Guro1 | Guro2 | Guro3 | Guro4 | Sinlim1 | Sinlim2 | Sinlim5 | Mullae | Dorim2 | Daerim2 | Daerim3 |
---|---|---|---|---|---|---|---|---|---|---|---|
2010 | GR1_123 (366 m3) | GR2_082 (97 m3) | GR3_120 (5 m3) | GR4_471 (2 m3) | SL1_624 (235,727 m3) | SL2_420 (242,584 m3) | SL5_021 (56,009 m3) | MR_201 (79,380 m3) | DO_316 (35,271 m3) | DR2_326 (32 m3) | DR3_550 (1597 m3) |
2011 | GR1_123 (703 m3) | GR2_082 (39 m3) | GR3_120 (2 m3) | GR4_471 (1 m3) | SL1_624 (190,725 m3) | SL2_420 (370,703 m3) | SL5_021 (87,138 m3) | MR_201 (64,473 m3) | DO_316 (74,934 m3) | DR2_326 (135 m3) | DR3_550 (143 m3) |
Monitoring Candidates | Water Level in Dorim Stream (EL. m) | Height of Bank (EL. m) | Freeboard (m) | |||
---|---|---|---|---|---|---|
Left | Right | Left | Right | |||
Dorim Bridge | 30-year | 12.7 | 14.36 | 14.56 | 1.66 | 1.86 |
50-year | 13.22 | 14.36 | 14.56 | 1.14 | 1.34 | |
80-year | 13.71 | 14.36 | 14.56 | 0.65 | 0.85 | |
100-year | 13.92 | 14.36 | 14.56 | 0.44 | 0.64 | |
200-year | 14.63 | 14.36 | 14.56 | −0.27 | −0.07 | |
Guro1 Bridge | 30-year | 14.61 | 17.57 | 17.57 | 2.96 | 2.96 |
50-year | 15.34 | 17.57 | 17.57 | 2.23 | 2.23 | |
80-year | 16.02 | 17.57 | 17.57 | 1.55 | 1.55 | |
100-year | 16.27 | 17.57 | 17.57 | 1.3 | 1.3 | |
200-year | 16.83 | 17.57 | 17.57 | 0.74 | 0.74 | |
Sindaebang Bridge | 30-year | 16.32 | 18.17 | 17.14 | 1.85 | 0.82 |
50-year | 16.85 | 18.17 | 17.14 | 1.32 | 0.29 | |
80-year | 17.44 | 18.17 | 17.14 | 0.73 | −0.3 | |
100-year | 17.67 | 18.17 | 17.14 | 0.5 | −0.53 | |
200-year | 18.2 | 18.17 | 17.14 | −0.03 | −1.06 | |
Gwanakdorim Bridge | 30-year | 17.8 | 19.5 | 19.5 | 1.7 | 1.7 |
50-year | 18.16 | 19.5 | 19.5 | 1.34 | 1.34 | |
80-year | 18.56 | 19.5 | 19.5 | 0.94 | 0.94 | |
100-year | 18.74 | 19.5 | 19.5 | 0.76 | 0.76 | |
200-year | 19.16 | 19.5 | 19.5 | 0.34 | 0.34 | |
Sinlim3 Bridge | 30-year | 36.26 | 37.45 | 37.05 | 1.19 | 0.79 |
50-year | 36.4 | 37.45 | 37.05 | 1.05 | 0.65 | |
80-year | 36.52 | 37.45 | 37.05 | 0.93 | 0.53 | |
100-year | 36.58 | 37.45 | 37.05 | 0.87 | 0.47 | |
200-year | 36.73 | 37.45 | 37.05 | 0.72 | 0.32 | |
Seoul National University Bridge | 30-year | 68.99 | 74.47 | 70.17 | 5.48 | 1.18 |
50-year | 69.03 | 74.47 | 70.17 | 5.44 | 1.14 | |
80-year | 69.19 | 74.47 | 70.17 | 5.28 | 0.98 | |
100-year | 69.23 | 74.47 | 70.17 | 5.24 | 0.94 | |
200-year | 69.36 | 74.47 | 70.17 | 5.11 | 0.81 |
Pump Station | Operation | Operating Level (m) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Guro1 | Elevation (m) | 6.75 | 6.85 | 6.95 | 7.05 | 7.35 | 7.55 | 7.65 | 7.75 | 7.85 | 8.50 | - | - | - |
Current | - | - | 3.93 | 8.02 | 12.10 | 14.43 | 16.77 | 21.27 | 25.77 | 26.68 | - | - | - | |
New | - | 3.93 | 8.02 | 12.1 | 14.43 | 16.77 | 21.27 | 25.77 | 26.68 | 26.68 | - | - | - | |
Guro2 | Elevation (m) | 6.7 | 7.0 | 7.1 | 7.3 | 7.8 | 7.9 | 8 | 8.2 | - | - | - | - | - |
Current | - | - | 12.00 | 12.00 | 12.92 | 15.92 | 18.92 | 21.92 | - | - | - | - | - | |
New | - | 12.00 | 12.92 | 15.92 | 18.92 | 21.92 | 21.92 | 21.92 | - | - | - | - | - | |
Guro3 | Elevation (m) | 6.4 | 6.5 | 6.6 | 6.7 | 6.9 | 7.2 | 8.0 | - | - | - | - | - | - |
Current | - | - | 0.67 | 1.33 | 4.25 | 7.17 | 10.08 | - | - | - | - | - | - | |
New | - | 0.67 | 1.33 | 4.25 | 7.17 | 10.08 | 10.08 | - | - | - | - | - | - | |
Guro4 | Elevation (m) | 5.3 | 5.5 | 5.9 | 6.1 | 6.4 | 7.5 | - | - | - | - | - | - | - |
Current | - | - | 1.00 | 3.33 | 5.67 | 8.00 | - | - | - | - | - | - | - | |
New | - | 1.00 | 3.33 | 5.67 | 8.00 | 8.00 | - | - | - | - | - | - | - | |
Sinlim1 | Elevation (m) | 7.7 | 7.8 | 8.0 | 9.0 | 9.5 | 10.0 | 12.0 | - | - | - | - | - | - |
Current | - | - | - | 3.33 | 6.67 | 10.00 | 16.67 | - | - | - | - | - | - | |
New | - | 3.33 | 6.67 | 10.00 | 16.67 | 16.67 | 16.67 | - | - | - | - | - | - | |
Sinlim2 | Elevation (m) | 10.8 | 10.9 | 11.1 | 11.3 | 11.5 | 11.7 | 13.0 | - | - | - | - | - | - |
Current | - | - | 1.08 | 4.15 | 7.22 | 10.28 | 13.25 | - | - | - | - | - | - | |
New | - | 1.08 | 4.15 | 7.22 | 10.28 | 13.25 | - | - | - | - | - | - | - | |
Sinlim5 | Elevation (m) | 15.8 | 16.0 | 16.5 | 16.6 | 16.8 | 17.0 | 18.0 | - | - | - | - | - | - |
Current | - | - | - | - | 2.50 | 4.67 | 6.83 | - | - | - | - | - | - | |
New | - | 2.50 | 4.67 | 6.83 | 6.83 | 6.83 | 6.83 | - | - | - | - | - | - | |
Mullae | Elevation (m) | 4.5 | 4.9 | 5.0 | 5.1 | 5.2 | 5.3 | 7.0 | - | - | - | - | - | - |
Current | - | - | 5.48 | 10.97 | 16.45 | 21.93 | 23.92 | - | - | - | - | - | - | |
New | - | 5.48 | 10.97 | 16.45 | 21.93 | 23.92 | 23.92 | - | - | - | - | - | - | |
Dorim2 | Elevation (m) | 7.5 | 7.6 | 7.8 | 7.9 | 8.0 | 8.1 | 8.1 | 8.3 | 8.4 | 9.0 | - | - | - |
Current | - | - | - | 3.93 | 7.87 | 11.80 | 15.73 | 20.18 | 24.63 | 29.08 | - | - | - | |
New | - | 3.93 | 7.87 | 11.80 | 15.73 | 20.18 | 24.63 | 29.08 | 29.08 | 29.08 | - | - | - | |
Daerim2 | Elevation (m) | 8.5 | 9.5 | 10.5 | 10.9 | 11.4 | - | - | - | - | - | - | - | - |
Current | - | - | 1.87 | 3.73 | 5.60 | - | - | - | - | - | - | - | - | |
New | - | 1.87 | 3.73 | 5.60 | 5.60 | - | - | - | - | - | - | - | - | |
Daerim3 | Elevation (m) | 6.5 | 6.8 | 7.2 | 7.3 | 7.5 | 7.6 | 7.7 | 7.8 | 7.9 | 8.0 | 8.1 | 8.3 | 9.0 |
Current | - | - | - | 3.88 | 8.05 | 15.48 | 19.65 | 23.36 | 27.08 | 30.80 | 57.02 | 57.02 | 57.02 | |
New | - | 3.88 | 8.05 | 15.48 | 19.65 | 23.36 | 27.08 | 30.80 | 57.02 | 57.02 | 57.02 | - | - |
Event | System Resilience of the Current Operation | System Resilience of the Integrated Operation | Increment in System Resilience |
---|---|---|---|
2010 | 0.199 | 0.238 | 0.039 |
2011 | 0.064 | 0.235 | 0.171 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.H.; Choi, Y.H.; Kim, J.H. Real-Time Integrated Operation for Urban Streams with Centralized and Decentralized Reservoirs to Improve System Resilience. Water 2019, 11, 69. https://doi.org/10.3390/w11010069
Lee EH, Choi YH, Kim JH. Real-Time Integrated Operation for Urban Streams with Centralized and Decentralized Reservoirs to Improve System Resilience. Water. 2019; 11(1):69. https://doi.org/10.3390/w11010069
Chicago/Turabian StyleLee, Eui Hoon, Young Hwan Choi, and Joong Hoon Kim. 2019. "Real-Time Integrated Operation for Urban Streams with Centralized and Decentralized Reservoirs to Improve System Resilience" Water 11, no. 1: 69. https://doi.org/10.3390/w11010069
APA StyleLee, E. H., Choi, Y. H., & Kim, J. H. (2019). Real-Time Integrated Operation for Urban Streams with Centralized and Decentralized Reservoirs to Improve System Resilience. Water, 11(1), 69. https://doi.org/10.3390/w11010069