Hydrologic Risk Assessment of Future Extreme Drought in South Korea Using Bivariate Frequency Analysis
Abstract
:1. Introduction
2. Study area and Data
3. Methodology
3.1. Threshold Level Method
3.2. Bivariate Frequency Analysis
4. Results
4.1. Definition of a Drought Event
4.2. Drought Risk Analysis Using Bivariate Frequency Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, J.H.; Kwon, H.H.; Jang, H.W.; Kim, T.W. Future changes in drought characteristics under extreme climate change over South Korea. Adv. Meteorol. 2016, 2016, 1–19. [Google Scholar] [CrossRef]
- Kwon, H.-H.; Khalil, A.F.; Siegfried, T. Analysis of extreme summer rainfall using climate teleconnections and typhoon characteristics in South Korea. J. Am. Water Resour. Assoc. 2008, 44, 436–448. [Google Scholar] [CrossRef]
- Kwon, H.-H.; Brown, C.; Lall, U. Climate informed flood frequency analysis and prediction in Montana using hierarchical Bayesian modeling. Geophys. Res. Lett. 2008, 35, 05404. [Google Scholar] [CrossRef]
- Kwon, H.-H.; Sivakumar, B.; Moon, Y.-I.; Kim, B.-S. Assessment of change in design flood frequency under climate change using a multivariate downscaling model and a precipitation runoff model. Stoch. Environ. Res. Risk Assess. 2011, 25, 567–581. [Google Scholar] [CrossRef]
- Janga, R.M.; Ganguli, P. Application of copulas for derivation of drought severity-duration-frequency curves. Hydrol. Process. 2012, 26, 1672–1685. [Google Scholar] [CrossRef]
- Obasi, G.O.P. WMO’s role in the international decade for natural disaster reduction. Bull. Am. Meteorol. Soc. 1994, 75, 1655–1662. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, S.Y.; Kim, J.S.; Sur, C.; Chen, J. Extreme drought hotspot analysis for adaptation to a changing climate: Assessment of applicability to the five major river basins of the Korean Peninsula. Int. J. Climatol. 2018, 38, 4025–4032. [Google Scholar] [CrossRef]
- Waseem, M.; Ajmal, M.; Kim, T.W. Development of a new composite drought index for multivariate drought assessment. J. Hydrol. 2015, 527, 30–37. [Google Scholar] [CrossRef]
- Van Huijgevoort, M.H.J.; Hazenberg, P.; van Lanen, H.A.J.; Uijlenhoet, R. A generic method for hydrological drought identification across different climate regions. Hydrol. Earth Syst. Sci. 2012, 16, 2437–2451. [Google Scholar] [CrossRef] [Green Version]
- Shiau, J.T.; Shen, H.W. Recurrence analysis of hydrologic droughts of differing severity. J. Water Resour. Plan. Manag. 2001, 127, 30–40. [Google Scholar] [CrossRef]
- Mirakbari, M.; Ganji, A.; Fallah, S.R. Regional bivariate frequency analysis of meteorological droughts. J. Hydrol. Eng. 2010, 15, 985–1000. [Google Scholar] [CrossRef]
- Yu, J.S.; Shin, J.Y.; Kwon, M.S.; Kim, T.W. Bivariate drought frequency analysis to evaluate water supply capacity of multi-purpose dams. J. Korean Soc. Civ. Eng. 2017, 37, 231–238. [Google Scholar] [CrossRef]
- Kim, T.-W.; Valdés, J.B.; Yoo, C.S. Nonparametric approach for estimating return periods of droughts in arid regions. J. Hydrol. Eng. 2003, 8, 237–246. [Google Scholar] [CrossRef]
- Mirabbasi, R.; Fakheri-Fard, A.; Dinpashoh, Y. Bivariate drought frequency analysis using the copula method. Theor. Appl. Climatol. 2012, 108, 191–206. [Google Scholar] [CrossRef]
- Yoo, J.; Kim, D.; Kim, H.; Kim, T.W. Application of copula functions to construct confidence intervals of bivariate drought frequency curve. J. Hydrol. Environ. Res. 2016, 11, 113–122. [Google Scholar] [CrossRef]
- Ganguli, P.; Reddy, M.J. Risk assessment of droughts in Gujarat using bivariate copulas. Water Resour. Manag. 2012, 26, 3301–3327. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Kwon, H.H.; Lee, J.H.; Kim, T.W. Influence of evapotranspiration of future drought risk using bivariate drought frequency curves. KSCE J. Civ. Eng. 2016, 20, 2059–2069. [Google Scholar] [CrossRef]
- Kim, N.S.; Kim, J.S.; Jang, H.W.; Lee, J.H. Hydrologic risk analysis based on extreme drought over the Korean peninsula under climate change. J. Korea Soc. Hazard Mitig. 2015, 15, 45–52. [Google Scholar] [CrossRef]
- Yu, J.S.; Yoo, J.Y.; Lee, J.H.; Kim, T.W. Estimation of drought risk through the bivariate drought frequency analysis using copula functions. J. Korea Water Resour. Assoc. 2016, 49, 217–225. [Google Scholar] [CrossRef]
- Park, M.W.; Lee, O.J.; Park, Y.K.; Kim, S.D. Future drought projection In Korea under AR5 RCP climate change scenarios. J. Korea Soc. Hazard Mitig. 2015, 15, 423–433. [Google Scholar] [CrossRef]
- Wood, A.W.; Leung, L.R.; Sridhar, V.; Lettenmaier, D.P. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim. Chang. 2004, 62, 189–216. [Google Scholar] [CrossRef]
- Bae, D.H.; Jung, I.W.; Lettenmaier, D.P. Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju basin, Korea. J. Hydrol. 2011, 401, 90–105. [Google Scholar] [CrossRef]
- Kwak, J.W.; Lee, S.D.; Kim, Y.S.; Kim, J.S. Return period estimation of droughts using drought variables from standardized precipitation index. J. Korea Water Resour. Assoc. 2013, 46, 795–805. [Google Scholar] [CrossRef]
- Wada, Y.; van Beek, L.P.H.; Wanders, N.; Bierkens, M.F.P. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 2013, 8, 034036. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.Y.; Kim, T.W.; Kim, S.D. Drought frequency analysis using cluster analysis and bivariate probability distribution. J. Korea Water Resour. Assoc. 2010, 30, 599–606. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Kwon, H.H.; Kim, T.W.; Ahn, J.H. Drought frequency analysis using cluster analysis and bivariate probability distribution. J. Hydrol. 2012, 14, 102–111. [Google Scholar] [CrossRef]
- Sung, J.H.; Chung, E.S. Proposal and application of water deficit-duration-frequency curve using threshold level method. J. Korea Water Resour. Assoc. 2014, 47, 997–1005. [Google Scholar] [CrossRef]
- Carrão, H.; Singleton, A.; Naumann, G.; Barbosa, P.; Vogt, J. An optimized system for the classification of meteorological drought intensity with applications in frequency analysis. J. Appl. Meteor. Climatol. 2014, 53, 1943–1960. [Google Scholar] [CrossRef]
- Van Loon, A.F. Hydrological drought explained. Wiley Interdiscip. Rev. Water 2015. [Google Scholar] [CrossRef]
- Hisdal, H.; Tallaksen, T. Drought Event Definition; Technical Report; ARIDE Technical Report NO. 6; University of Oslo: Oslo, Norway, 2000. [Google Scholar]
- Karimi, M.; Shahedi, K. Hydrological drought analysis of Karkheh River basin in Iran using variable threshold level method. Curr. World Environ. J. 2013, 8, 419–428. [Google Scholar] [CrossRef]
- Kim, T.-W.; Valdés, J.B.; Yoo, C.S. Nonparametric approach for bivariate drought characterization using Palmer drought index. J. Hydrol. Eng. 2006, 11, 134–143. [Google Scholar] [CrossRef]
- De Michele, C.; Salvadori, G. A generalized pareto intensity-duration model of storm rainfall exploiting 2-copulas. J. Geophys. Res. 2003, 108, 4067. [Google Scholar] [CrossRef]
- De Michele, C.; Salvadori, G.; Canossi, M.; Petaccia, A.; Rosso, R. Bivariate statistical approach to check adequacy of dam spillway. J. Hydrol. Eng. 2005, 10, 50–57. [Google Scholar] [CrossRef]
- Favre, A.C.; Adlouni, S.E.; Perreault, L.; Thiemonge, N.; Bobbe, B. Multivariate hydrological frequency using copulas. Water Resour. Res. 2004, 40, 1–12. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C. Analytical calculation of storm volume statistics with pareto-like intensity-duration marginals. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C. Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resour. Res. 2004, 40, 1–17. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C. Statistical characterization of temporal structure of storms. Adv. Water Resour. 2006, 29, 827–842. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C. On the use of copulas in hydrology: Theory and practice. J. Hydrol. Eng. 2007, 12, 369–380. [Google Scholar] [CrossRef]
- Wong, G. A comparison between the Gumbel-Hougaard and distorted Frank copulas for drought frequency analysis. Int. J. Hydrol. Sci. Technol. 2013, 3, 77–91. [Google Scholar] [CrossRef]
- Wong, G.; Lambert, M.F.; Leonard, M.; Metcalfe, A.V. Drought analysis using trivariate copulas conditional on climate states. J. Hydrol. Eng. 2010, 15, 129–141. [Google Scholar] [CrossRef]
- Lee, T.; Salas, J.D. Copula-based stochastic simulation of hydrological data applied to Nile River flows. Hydrol. Res. 2011, 42, 318–330. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Yu, J.S.; Kwon, H.H.; Kim, T.W. Determination of drought events considering the possibility of relieving drought and estimation of design drought severity. J. Korea Water Resour. Assoc. 2016, 49, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Shiau, J.-T.; Wang, H.-Y.; Tsai, C.-T. Bivariate frequency analysis of flood using copulas. J. Am. Water Resour. Assoc. 2006, 42, 1549–1564. [Google Scholar] [CrossRef]
- Nelson, R.B. An Introduction to Copulas; Springer: New York, NY, USA, 1999. [Google Scholar]
- Zhang, L.; Singh, V.P. Bivariate flood frequency analysis using the copula method. J. Hydrol. Eng. 2006, 11, 150–164. [Google Scholar] [CrossRef]
- Chen, L.; Sinngh, V.P.; Guo, S.; Mishra, A.K.; Guo, J. Drought analysis using copulas. J. Hydrol. Eng. 2013, 18, 797–808. [Google Scholar] [CrossRef]
- Kwon, Y.-M.; Kim, T.-W. Derived I-D-F curve in Seoul using bivariate precipitation frequency analysis. J. Korean Soc. Civ. Eng. 2009, 29, 155–162. [Google Scholar]
- Chow, V.T.; Maidment, D.R.; Mays, L. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988; p. 572. [Google Scholar]
- Park, B.S.; Lee, J.H.; Kim, C.J.; Jang, H.W. Projection of future drought of Korea based on probabilistic approach using multi-model and multi climate change scenarios. J. Korean Soc. Civ. Eng. 2013, 33, 1871–1885. [Google Scholar] [CrossRef]
Model | Institution |
---|---|
CanESM2 | Canadian Centre for Climate Modelling and Analysis |
CCSM4 | National Center for Atmospheric Research |
CESM1-BGC | National Center for Atmospheric Research |
CESM1-CAM5 | National Center for Atmospheric Research |
CMCC-CM | Centro Euro-Mediterraneo per I Cambiamenti Climatici |
CMCC-CMS | Centro Euro-Mediterraneo per I Cambiamenti Climatici |
CNRM-CM5 | Centre National de Recherches Meteorologiques |
GFDL-ESM2G | Geophysical Fluid Dynamics Laboratory |
GFDL-ESM2M | Geophysical Fluid Dynamics Laboratory |
HadGEM2-AO | Met Office Hadley Centre |
HadGEM2-ES | Met Office Hadley Centre |
INM-CM4 | Institute for Numerical Mathematics |
IPSL-CM5A-LR | Institut Pierre-Simon Laplace |
IPSL-CM5A-MR | Institut Pierre-Simon Laplace |
MIROC5 | Atmosphere and Ocean Research Institute |
MPI-ESM-LR | Max Planck Institute for Meteorology |
MPI-ESM-MR | Max Planck Institute for Meteorology |
MRI-CGCM3 | Meteorological Research Institute |
NorESM1-M | Norwegian Climate Centre |
Name | Note | |
---|---|---|
Clayton | and denote random variates is a parameter. | |
Frank | ||
Gumbel |
Characteristics | Dataset | Han River | Nakdong River | Geum River | Seomjin River | Yeongsan River | |
---|---|---|---|---|---|---|---|
Average Duration (mon) | Observed data | 3.42 | 3.56 | 3.41 | 3.47 | 3.43 | |
GCMs | Lowest | 3.18 (HadGEM2-AO) | 2.97 (HadGEM2-AO) | 3.19 (HadGEM2-AO) | 3.23 (IPSL-CM5A-MR) | 3.21 (HadGEM2-AO) | |
Highest | 3.73 (CFDL-ESM2M) | 3.83 (CMCC-CM) | 3.72 (CMCC-CM) | 3.73 (IPSL-CM5A-LR) | 3.87 (CFDL-ESM2M) | ||
Average | 3.44 | 3.51 | 3.50 | 3.51 | 3.47 | ||
Average Severity (mm) | Observed data | 660.8 | 600.3 | 601.8 | 711.2 | 630.9 | |
GCMs | Lowest | 599.9 (CESM1-BGC) | 503 (CESM1-BGC) | 558.5 (CESM1-BGC) | 654.7 (CESM1-BGC) | 579.2 (CESM1-BGC) | |
Highest | 804.1 (INM-CM4) | 725.4 (HadGEM2-AO) | 771.8 (HadGEM2-AO) | 832.7 (CNRM-CM5) | 742.3 (CFDL-ESM2M) | ||
Average | 685.73 | 6225.73 | 661.41 | 760.20 | 669.51 |
Characteristics | Dataset | Han River | Nakdong River | Geum River | Sumjin River | Yeongsan River | |
---|---|---|---|---|---|---|---|
Average Duration (mon) | Observed data | 12 | 14 | 14 | 14 | 14 | |
GCMs | Lowest | 8 (CESM1-BGC) | 7 (HadGEM2-AO) | 9 (GFDL-ESM2M) | 7 (HadGEM2-AO) | 10 (CESM1-BGC) | |
Highest | 25 (MPI-ESM-MR) | 25 (MPI-ESM-MR) | 25 (MPI-ESM-MR) | 19 (CESM1-CAM5) | 29 (MPI-ESM-MR) | ||
Average | 13.2 | 11.9 | 14.1 | 12.0 | 13.8 | ||
Average Severity (mm) | Observed data | 2673.7 | 2127.6 | 2745.7 | 2238.8 | 2307.5 | |
GCMs | Lowest | 2169.9 (CESM1-BGC) | 1474.1 (CESM1-BGC) | 2526.3 (CMCC-CM) | 2020.7 (HadGEM2-AO) | 2073.1 (NorESM1-M) | |
Highest | 5081.9 (MPI-ESM-MR) | 3964.9 (MPI-ESM-MR) | 4793.6 (CanESM2) | 3823.5 (IPSL-CM5A-LR) | 4920.2 (MPI-ESM-MR) | ||
Average | 3132.62 | 2178.64 | 3278.40 | 2707.99 | 2757.99 |
Basin (River) | CanESM2 | CCSM4 | CESM1-BGC | CESM1-CAM5 | CMCC-CM | CMCC-CMS | CNRM-CM5 | GFDL-ESM2G | GFDL-ESM2M | HadGEM2-AO | HadGEM2-ES | INM-CM4 | IPSL-CM5A-LR | IPSL-CM5A-MR | MIROC5 | MPI-ESM-LR | MPI-ESM-MR | MRI-CGCM3 | NorESM1-M |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Han River | 0.64 | 0.53 | 0.56 | 0.65 | 0.83 | 0.84 | 0.68 | 0.55 | 0.55 | 0.62 | 0.72 | 0.61 | 0.59 | 0.51 | 0.73 | 0.78 | 0.67 | 0.78 | 0.48 |
Nakdong River | 0.79 | 0.73 | 0.83 | 0.51 | 0.54 | 0.89 | 0.85 | 0.71 | 0.70 | 0.69 | 0.73 | 0.66 | 0.78 | 0.56 | 0.73 | 0.63 | 0.60 | 0.69 | 0.58 |
Geum River | 0.65 | 0.58 | 0.75 | 0.45 | 0.57 | 0.94 | 0.55 | 0.67 | 0.71 | 0.58 | 0.78 | 0.46 | 0.77 | 0.59 | 0.68 | 0.64 | 0.68 | 0.91 | 0.38 |
Seomjin River | 0.68 | 0.82 | 0.62 | 0.78 | 0.81 | 0.82 | 0.84 | 0.60 | 0.67 | 0.52 | 0.62 | 0.83 | 0.81 | 0.57 | 0.84 | 0.84 | 0.75 | 0.71 | - |
Yeongsan River | 0.26 | 0.54 | 0.66 | 0.63 | 0.65 | 0.80 | 0.80 | 0.52 | 0.68 | 0.41 | - | 0.45 | 0.79 | 0.38 | 0.69 | 0.75 | 0.96 | 0.70 | 0.31 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.E.; Yoo, J.; Chung, G.H.; Kim, T.-W. Hydrologic Risk Assessment of Future Extreme Drought in South Korea Using Bivariate Frequency Analysis. Water 2019, 11, 2052. https://doi.org/10.3390/w11102052
Kim JE, Yoo J, Chung GH, Kim T-W. Hydrologic Risk Assessment of Future Extreme Drought in South Korea Using Bivariate Frequency Analysis. Water. 2019; 11(10):2052. https://doi.org/10.3390/w11102052
Chicago/Turabian StyleKim, Ji Eun, Jiyoung Yoo, Gun Hui Chung, and Tae-Woong Kim. 2019. "Hydrologic Risk Assessment of Future Extreme Drought in South Korea Using Bivariate Frequency Analysis" Water 11, no. 10: 2052. https://doi.org/10.3390/w11102052
APA StyleKim, J. E., Yoo, J., Chung, G. H., & Kim, T. -W. (2019). Hydrologic Risk Assessment of Future Extreme Drought in South Korea Using Bivariate Frequency Analysis. Water, 11(10), 2052. https://doi.org/10.3390/w11102052