Simulation of Hydraulic Structures in 2D High-Resolution Urban Flood Modeling
Abstract
:1. Introduction
2. Numerical Model
2.1. Finite Volume Godunov-Type SWE Model
2.2. Gate Model
2.3. Model Coupling
2.3.1. Flux Term Coupling Approach
- (1)
- Under the free-surface flow condition
- (2)
- Under the submerged flow condition
2.3.2. Source Term Coupling Approach
3. Model Validation
3.1. Analytical Tests
3.2. Flume Experiments
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Dubash, N.K. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Yin, J.; Yu, D.; Wilby, R. Modelling the impact of land subsidence on urban pluvial flooding: A case study of downtown Shanghai, China. Sci. Total Environ. 2016, 544, 744–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, H.; Esteban, M.; Mikami, T.; Fujii, D. Projection of coastal floods in 2050 Jakarta. Urban Clim. 2016, 17, 135–145. [Google Scholar] [CrossRef]
- Ward, P.J.; Jongman, B.; Weiland, F.S.; Bouwman, A.; Van Beek, R.; Bierkens, M.F.P.; Ligtvoet, W.; Winsemius, H.C. Assessing flood risk at the global scale: Model setup, results, and sensitivity. Environ. Res. Lett. 2013, 8, 044019. [Google Scholar] [CrossRef]
- Yang, T.H.; Yang, S.C.; Ho, J.Y.; Lin, G.F.; Hwang, G.D.; Lee, C.S. Flash flood warnings using the ensemble precipitation forecasting technique: A case study on forecasting floods in taiwan caused by typhoons. J. Hydrol. 2015, 520, 367–378. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Mitchell, G.; Adekola, O.; McDonald, A. Flood risk in Asia’s urban mega-deltas drivers, impacts and response. Environ. Urban. Asia 2012, 3, 41–61. [Google Scholar] [CrossRef]
- Okoye, C.B.; Ojeh, V.N. Mapping of flood prone areas in Surulere, Lagos, Nigeria: A GIS approach. J. Geogr. Inf. Syst. 2015, 7, 158–176. [Google Scholar] [CrossRef]
- Breckpot, M.; Agudelo, O.M.; Meert, P.; Willems, P.; De Moor, B. Flood control of the Demer by using Model Predictive Control. Control Eng. Pract. 2013, 21, 1776–1787. [Google Scholar] [CrossRef]
- Sims, J. The No-Nonsense Guide to Flood Safety; Lulu Books & Beyond the Spectrum Books; Lulu Press: Morrisvill, NC, USA, 2013. [Google Scholar]
- Tingsanchali, T. Urban flood disaster management. Procedia Eng. 2012, 32, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Ogie, R.; Holderness, T.; Dunbar, M.; Turpin, E. Spatio-topological network analysis of hydrological infrastructure as a decision support tool for flood mitigation in coastal mega-cities. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 718–739. [Google Scholar] [CrossRef]
- Ogie, R.; Holderness, T.; Dunn, S.; Turpin, E. Assessing the vulnerability of hydrological infrastructure to flood damage in coastal cities of developing nations. Comput. Environ. Urban Syst. 2018, 68, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Dewan, A. Floods in a Megacity: Geospatial Techniques in Assessing Hazards, Risk and Vulnerability; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Ding, Y.; Wang, S.S. Optimal control of flood diversion in watershed using nonlinear optimization. Adv. Water Resour. 2012, 44, 30–48. [Google Scholar] [CrossRef]
- Munoz, D.H.; Constantinescu, G. A Fully 3-D Numerical Model to Predict Flood Wave Propagation and Assess Efficiency of Flood Protection Measures. Adv. Water Resour. 2018, 122, 148–165. [Google Scholar] [CrossRef]
- Yin, J.; Ye, M.; Yin, Z.; Xu, S. A review of advances in urban flood risk analysis over China. Stoch. Environ. Res. Risk Assess. 2015, 29, 1063–1070. [Google Scholar] [CrossRef]
- Sanders, B.F. Hydrodynamic modeling of urban flood flows and disaster risk reduction. In Oxford Research Encyclopedia of Natural Hazard Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Morgan, A.; Olivier, D.; Nathalie, B.; Claire-Marie, D.; Philippe, G. High-resolution Modeling With Bi-dimensional Shallow Water Equations Based Codes—High-Resolution Topographic Data Use for Flood Hazard Assessment Over Urban and Industrial Environments. Procedia Eng. 2016, 154, 853–860. [Google Scholar] [CrossRef]
- Vacondio, R.; Aureli, F.; Ferrari, A.; Mignosa, P.; Dal Palù, A. Simulation of the January 2014 flood on the Secchia River using a fast and high-resolution 2D parallel shallow-water numerical scheme. Nat. Hazards 2016, 80, 103–125. [Google Scholar] [CrossRef]
- Liang, Q.; Smith, L.S. A high-performance integrated hydrodynamic modelling system for urban flood simulations. J. Hydroinform. 2015, 17, 518–533. [Google Scholar] [CrossRef]
- Song, L.; Zhou, J.; Guo, J.; Zou, Q.; Liu, Y. A robust well-balanced finite volume model for shallow water flows with wetting and drying over irregular terrain. Adv. Water Resour. 2011, 34, 915–932. [Google Scholar] [CrossRef]
- Bates, P.D.; De Roo, A.P.J. A simple raster-based model for flood inundation simulation. J. Hydrol. 2000, 236, 54–77. [Google Scholar] [CrossRef]
- Xing, Y.; Liang, Q.; Wang, G.; Ming, X.; Xia, X. City-scale hydrodynamic modeling of urban flash floods: The issues of scale and resolution. Nat. Hazards 2019, 96, 473–496. [Google Scholar] [CrossRef]
- Morales-Hernández, M.; Murillo, J.; García-Navarro, P. The formulation of internal boundary conditions in unsteady 2-D shallow water flows: Application to flood regulation. Water Resour. Res. 2013, 49, 471–487. [Google Scholar] [CrossRef]
- Angeloudis, A.; Falconer, R.; Bray, S. Representation and operation of tidal energy impoundments in a coastal hydrodynamic model. Renew. Energy 2016, 99, 1103–1115. [Google Scholar] [CrossRef] [Green Version]
- Malekmohammadi, B.; Zahraie, B.; Kerachian, R. A real-time operation optimization model for flood management in river-reservoir systems. Nat. Hazards 2010, 53, 459–482. [Google Scholar] [CrossRef]
- Luo, P.; Mu, D.; Xue, H.; Ngo-Duc, T.; Dang-Dinh, K.; Takara, K.; Nover, D.; Schladow, G. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep. 2018, 8, 12623. [Google Scholar] [CrossRef]
- Toro, E.F. Shock-Capturing Methods for Free-Surface Shallow Flows; Wiley: Chichester, UK, 2001. [Google Scholar]
- Liang, Q.; Borthwick, A.G. Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography. Comput. Fluids 2009, 38, 221–234. [Google Scholar] [CrossRef]
- Toro, E.F.; Garcia-Navarro, P. Godunov-type methods for free-surface shallow flows: A review. J. Hydraul. Res. 2007, 45, 736–751. [Google Scholar] [CrossRef]
- Martins, R.; Kesserwani, G.; Rubinato, M.; Lee, S.; Leandro, J.; Djordjević, S.; Shucksmith, J.D. Validation of 2d shock capturing flood models around a surcharging manhole. Urban Water J. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Liang, Q. Flood simulation using a well-balanced shallow flow model. Hydraul. Eng. 2010, 136, 669–675. [Google Scholar] [CrossRef]
- Amouzgar, R.; Liang, Q.; Clarke, P.; Yasuda, T.; Mase, H. Computationally Efficient Tsunami Modeling on Graphics Processing Units (GPUs). Int. J. Offshore Polar Eng. 2016, 26, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, L.; Cimorelli, L.; Covelli, C.; Pianese, D.; Della Morte, R. The analytic solution of the Shallow-Water Equations with partially open sluice-gates: The dam-break problem. Adv. Water Resour. 2015, 80, 90–102. [Google Scholar] [CrossRef]
- Bao, Q.; Wang, Y.; Tu, X. Experimental Study on Hydraulic Model of Zhujiazhan Sluice; Water Conservancy Science and Technology in Zhejiang Province: Hangzhou, China, 2013; Volume 41. [Google Scholar]
Test | hu (m) | hd (m) | e (m) |
---|---|---|---|
1 | 1 | 0.002 | 0.2 |
2 | 1 | 0.2 | 0.2 |
3 | 1 | 0.6 | 0.2 |
4 | 1 | 0.5 | 0.8 |
Test | 1 | 2 | 3 | 4 |
---|---|---|---|---|
RMSE (flux) | 0.0208 | 0.0233 | 0.0177 | 0.0221 |
RMSE (source) | 0.0675 | 0.0828 | 0.0469 | 0.0749 |
Case | e = 2.0 m (free flow) | e = 1.0 m (free flow) | e = 2.0 m; Q = 400 m3/s | e = 2.0 m; Q = 600 m3/s |
---|---|---|---|---|
RMSE | 0.0467 | 0.0590 | 0.0619 | 0.0851 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Liang, Q.; Wang, G.; Zhao, J.; Hu, J.; Wang, Y.; Xia, X. Simulation of Hydraulic Structures in 2D High-Resolution Urban Flood Modeling. Water 2019, 11, 2139. https://doi.org/10.3390/w11102139
Cui Y, Liang Q, Wang G, Zhao J, Hu J, Wang Y, Xia X. Simulation of Hydraulic Structures in 2D High-Resolution Urban Flood Modeling. Water. 2019; 11(10):2139. https://doi.org/10.3390/w11102139
Chicago/Turabian StyleCui, Yunsong, Qiuhua Liang, Gang Wang, Jiaheng Zhao, Jinchun Hu, Yuehua Wang, and Xilin Xia. 2019. "Simulation of Hydraulic Structures in 2D High-Resolution Urban Flood Modeling" Water 11, no. 10: 2139. https://doi.org/10.3390/w11102139
APA StyleCui, Y., Liang, Q., Wang, G., Zhao, J., Hu, J., Wang, Y., & Xia, X. (2019). Simulation of Hydraulic Structures in 2D High-Resolution Urban Flood Modeling. Water, 11(10), 2139. https://doi.org/10.3390/w11102139