Dewatering Characteristics and Inflow Prediction of Deep Foundation Pits with Partial Penetrating Curtains in Sand and Gravel Strata
Abstract
:1. Introduction
2. Problem Description
3. Numerical Simulation
3.1. Governing Equation
3.2. Simplification of Model Parameters
3.3. Initial/Boundary Conditions
3.4. Seepage Characteristics
4. Quantification of Blocking Effects
4.1. Equivalent Pumping Well Inflow
4.2. 3D Seepage Field Distortion Function
4.2.1. Normalized Form
4.2.2. Standard Curve
4.2.3. Distortion Function
4.2.4. Inflow Prediction with Partial Penetrating Curtains
5. Field Application
5.1. Design Method of the Dewatering Scheme
5.2. Dewatering Design of the Shuibu Metro Station
5.2.1. Hydrogeological Conditions of the Area
5.2.2. Depressurization Requirements
5.2.3. Dewatering Scheme Design
5.2.4. Comparison of Dewatering Control Schemes
5.2.5. Deviation Control Curves
5.2.6. Location of Pumping Wells
5.3. Field Verification
6. Discussion
- A quantitative analysis is based on the assumption that aquifer permeability is uniformly distributed at each point in the influence domain. However, many deep structures (e.g., pile foundations and high-rise building basements) have dispersed clay and grouting structures around the pumping influence area; this condition reduces the regional permeability of aquifers [35]. When these obstructions are located in regions with dense flows (e.g., foundation pit scope and curtain bottom), dewatering efficiency is substantially improved due to flow blocking.
- Non-Darcy flow occurs with a fast flow velocity [34] that is evident at the wall bottom and near the pumping well. Moreover, the wall–well effects enhance the non-Darcy flow effect and further promote dewatering efficiency.
- The parameter coupling effect is not considered in formula establishment. For example, when kd decreases and the other parameters vary to extend the vertical flow path, groundwater control efficiency may be improved rather than the multiplication of distortion functions caused by the separate variation of parameters.
7. Conclusions
- FDM is adopted to analyze dewatering seepage characteristics with curtains. The results show that the seepage field with various parameters exhibits different distributions and flow velocities that affect steady inflow Qw. Among the parameters, k plays a key role in flow velocity. Meanwhile, the other parameters, such as kv/kh, M, Mu, and ls, change the seepage field distribution.
- Inflow prediction formulas for pits with partial penetrating curtains in high-permeability aquifers are proposed under the assumption of an equivalent well by establishing the function of the Qd–bd curve and quantifying seepage deformation.
- A design method for dewatering schemes is proposed and applied to the dewatering design of the Shuibu Metro Station. The scheme of a 31.5 m reinforced concrete diaphragm wall combined with a 10.5 m non-reinforced concrete wall is adopted. Considering the design deviation of the formation generalization and curtain leakage, four main pumping wells combined with two reserved pumping wells are located in each subsection of the excavation for groundwater control. This design scheme maintains a safe margin of 25%, and the external drawdown is controlled within 1 m in the field to ensure safety during inside and outside excavations.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lei, M.; Lin, D.; Huang, Q.; Shi, C.; Huang, L. Research on the construction risk control technology of shield tunnel underneath an operational railway in sand pebble formation: A case study. Eur. J. Environ. Civ. Eng. 2018, 22, 1–15. [Google Scholar] [CrossRef]
- Luo, Z.J.; Zhang, Y.Y.; Wu, Y.X. Finite element numerical simulation of three-dimensional seepage control for deep foundation pit dewatering. J. Hydrodyn. 2008, 20, 596–602. [Google Scholar] [CrossRef]
- Xu, Y.S.; Ma, L.; Du, Y.J.; Shen, S.L. Analysis of urbanisation-induced land subsidence in Shanghai. Nat. Hazards 2012, 63, 1255–1267. [Google Scholar] [CrossRef]
- Xu, Y.S.; Wu, H.N.; Wang, B.Z.F.; Yang, T.L. Dewatering induced subsidence during excavation in a Shanghai soft deposit. Environ. Earth Sci. 2017, 76. [Google Scholar] [CrossRef]
- Lei, M.; Liu, J.; Lin, Y.; Shi, C.; Liu, C. Deformation Characteristics and Influence Factors of a Shallow Tunnel Excavated in Soft Clay with High Plasticity. Adv. Civ. Eng. 2019, 2019, 7483628. [Google Scholar] [CrossRef]
- Xu, Y.S.; Shen, J.S.; Zhou, A.N.; Arulrajah, A. Geological and hydrogeological environment with geohazards during underground construction in Hangzhou: A review. Arab. J. Geosci. 2018, 11, 544. [Google Scholar] [CrossRef]
- Wu, Y.X.; Lyu, H.M.; Han, J.; Shen, S.L. Dewatering-induced building settlement around a deep excavation in soft deposit in Tianjin, China. J. Geotech. Geoenviron. Eng. 2019, 145, 5019003. [Google Scholar] [CrossRef]
- Shen, S.L.; Wu, Y.X.; Xu, Y.S.; Hino, T.; Wu, H.N. Evaluation of hydraulic parameters from pumping tests in multi-aquifers with vertical leakage in Tianjin. Comput. Geotech. 2015, 68, 196–207. [Google Scholar] [CrossRef]
- Wang, Y.; Jiao, J.J. Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta, China. J. Hydrol. 2012, 438–439, 112–124. [Google Scholar] [CrossRef]
- Cao, C.; Shi, C.; Lei, M. A simplified approach to design jet-grouted bottom sealing barriers for deep excavations in deep aquifers. Appl. Sci. 2019, 9, 2307. [Google Scholar] [CrossRef]
- Cao, C.; Shi, C.; Liu, L.; Liu, J.; Lei, M.; Lin, Y.; Ye, Y. Novel excavation and construction method for a deep shaft excavation in Ultrathick aquifers. Adv. Civ. Eng. 2019, 2019, 1827479. [Google Scholar] [CrossRef]
- Jurado, A.; De Gaspari, F.; Vilarrasa, V.; Bolster, D.; Sánchez-Vila, X.; Fernàndez-Garcia, D.; Tartakovsky, D.M. Probabilistic analysis of groundwater-related risks at subsurface excavation sites. Eng. Geol. 2012, 125, 35–44. [Google Scholar] [CrossRef]
- Huang, Y.; Bao, Y.; Wang, Y. Analysis of geoenvironmental hazards in urban underground space development in Shanghai. Nat. Hazards 2014, 75, 2067–2079. [Google Scholar] [CrossRef]
- Shi, C.; Cao, C.; Lei, M.; Peng, L.; Jiang, J. Optimal design and dynamic control of construction dewatering with the consideration of dewatering process. KSCE J. Civ. Eng. 2017, 21, 1161–1169. [Google Scholar] [CrossRef]
- Roy, D.; Robinson, K.E. Surface settlements at a soft soil site due to bedrock dewatering. Eng. Geol. 2009, 107, 109–117. [Google Scholar] [CrossRef]
- Pujades, E.; Vàzquez-Suñé, E.; Carrera, J.; Jurado, A. Dewatering of a deep excavation undertaken in a layered soil. Eng. Geol. 2014, 178, 15–27. [Google Scholar] [CrossRef]
- Pujades, E.; Vázquez-Suñé, E.; Carrera, J.; Vilarrasa, V.; De Simone, S.; Jurado, A.; Ledesma, A.; Ramos, G.; Lloret, A. Deep enclosures versus pumping to reduce settlements during shaft excavations. Eng. Geol. 2014, 169, 100–111. [Google Scholar] [CrossRef]
- Wu, Y.X.; Shen, S.L.; Wu, H.N.; Xu, Y.S.; Yin, Z.Y.; Sun, W.J. Environmental protection using dewatering technology in a deep confined aquifer beneath a shallow aquifer. Eng. Geol. 2015, 196, 59–70. [Google Scholar] [CrossRef]
- Pujades, E.; De Simone, S.; Carrera, J.; Vázquez-Suñé, E.; Jurado, A. Settlements around pumping wells: Analysis of influential factors and a simple calculation procedure. J. Hydrol. 2017, 548, 225–236. [Google Scholar] [CrossRef]
- Shen, S.L.; Han, J.; Du, Y.J. Deep mixing induced property changes in surrounding sensitive marine clays. J. Geotech. Geoenviron. Eng. 2008, 134, 845–854. [Google Scholar] [CrossRef]
- Chen, J.J.; Zhang, L.; Zhang, J.F.; Zhu, Y.F.; Wang, J.H. Field tests, modification, and application of deep soil mixing method in soft clay. J. Geotech. Geoenviron. Eng. 2013, 139, 24–34. [Google Scholar] [CrossRef]
- Shen, S.L.; Wang, Z.F.; Horpibulsuk, S.; Kim, Y.H. Jet grouting with a newly developed technology: The Twin-Jet method. Eng. Geol. 2013, 152, 87–95. [Google Scholar] [CrossRef]
- Wang, Z.F.; Shen, S.L.; Ho, C.E.; Kim, Y.H. Investigation of field-installation effects of horizontal twin-jet grouting in Shanghai soft soil deposits. Can. Geotech. J. 2013, 50, 288–297. [Google Scholar] [CrossRef]
- Xu, Y.S.; Shen, S.L.; Ma, L.; Sun, W.J.; Yin, Z.Y. Evaluation of the blocking effect of retaining walls on groundwater seepage in aquifers with different insertion depths. Eng. Geol. 2014, 183, 254–264. [Google Scholar] [CrossRef]
- Vilarrasa, V.; Carrera, J.; Jurado, A.; Pujades, E.; Vázquez-Suné, E. A methodology for characterizing the hydraulic effectiveness of an annular low-permeability barrier. Eng. Geol. 2011, 120, 68–80. [Google Scholar] [CrossRef]
- Pujades, E.; Jurado, A.; Carrera, J.; Vázquez-Suñé, E.; Dassargues, A. Hydrogeological assessment of non-linear underground enclosures. Eng. Geol. 2016, 207, 91–102. [Google Scholar] [CrossRef]
- Pujades, E.; López, A.; Carrera, J.; Vázquez-Suñé, E.; Jurado, A. Barrier effect of underground structures on aquifers. Eng. Geol. 2012, 144–145, 41–49. [Google Scholar] [CrossRef]
- Wu, Y.X.; Shen, S.L.; Xu, Y.S.; Yin, Z.Y. Characteristics of groundwater seepage with cut-off wall in gravel aquifer. I: Field observations. Can. Geotech. J. 2015, 52, 1526–1538. [Google Scholar] [CrossRef]
- Wu, Y.X.; Shen, S.L.; Yin, Z.Y.; Xu, Y.S. Characteristics of groundwater seepage with cut-off wall in gravel aquifer. II: Numerical analysis. Can. Geotech. J. 2015, 52, 1539–1549. [Google Scholar] [CrossRef]
- Wu, Y.X.; Shen, J.S.; Cheng, W.C.; Hino, T. Semi-analytical solution to pumping test data with barrier, wellbore storage, and partial penetration effects. Eng. Geol. 2017, 226, 44–51. [Google Scholar] [CrossRef]
- Shen, S.L.; Wu, Y.X.; Misra, A. Calculation of head difference at two sides of a cut-off barrier during excavation dewatering. Comput. Geotech. 2017, 91, 192–202. [Google Scholar] [CrossRef]
- Zhou, N.; Vermeer, P.A.; Lou, R.; Tang, Y.; Jiang, S. Numerical simulation of deep foundation pit dewatering and optimization of controlling land subsidence. Eng. Geol. 2010, 114, 251–260. [Google Scholar] [CrossRef]
- Wang, J.; Feng, B.; Guo, T.; Wu, L.; Lou, R.; Zhou, Z. Using partial penetrating wells and curtains to lower the water level of confined aquifer of gravel. Eng. Geol. 2013, 161, 16–25. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Wu, Y.; Liu, S.; Wu, L.; Lou, R.; Lu, J.; Yin, Y. Field experiment and numerical simulation of coupling non-Darcy flow caused by curtain and pumping well in foundation pit dewatering. J. Hydrol. 2017, 549, 277–293. [Google Scholar] [CrossRef]
- Wu, Y.X.; Shen, S.L.; Yuan, D.J. Characteristics of dewatering induced drawdown curve under blocking effect of retaining wall in aquifer. J. Hydrol. 2016, 539, 554–566. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Liu, S.; Zhu, Y.; Pan, W.; Zhou, J. Physical model test of transparent soil on coupling effect of cut-off wall and pumping wells during foundation pit dewatering. Acta Geotech. 2019, 14, 141–162. [Google Scholar] [CrossRef]
- Xu, Y.S.; Yan, X.X.; Shen, S.L.; Zhou, A.N. Experimental investigation on the blocking of groundwater seepage from a waterproof curtain during pumped dewatering in an excavation. Hydrogeol. J. 2019, 27, 1–14. [Google Scholar] [CrossRef]
- Bear, J. Hydraulics of Groundwater; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Groundwater Flow Model; US Geological Survey: Reston, VA, USA, 1984.
- Harbaugh, B.A.W.; Banta, E.R.; Hill, M.C.; Mcdonald, M.G. MODFLOW-2000, The U.S. Geological Survey Modular Graound-Water Model—User Guide to Modularization Concepts and the Ground-Water Flow Process; U.S. Geological Survey: Reston, VA, USA, 2000; Volumn 130.
- Wilson, A.M.; Huettel, M.; Klein, S. Grain size and depositional environment as predictors of permeability in coastal marine sands. Estuar. Coast. Shelf Sci. 2008, 80, 193–199. [Google Scholar] [CrossRef]
- Colombo, L.; Gattinoni, P.; Scesi, L. Influence of underground structures and infrastructures on the groundwater level in the urban area of Milan. Int. J. Sustain. Dev. Plann. 2017, 12, 176–184. [Google Scholar] [CrossRef]
- Thiem, G. Hydrologische Methoden; Gebhardt: Leipzig, Germany, 1906. [Google Scholar]
Layer | Soil Layer | Type | Thickness (m) | kh (m/d) | kv (m/d) | Ss (1/m) | e | rw (kN/m3) |
---|---|---|---|---|---|---|---|---|
I and II | Fill and block stone | Phreatic aquifer | 4.0~6.0 | 8.64 | 8.64 | - | - | 18.5 |
III | Silt | Upper aquitard | 8.0~12.0 | 0.0055 | 0.0015 | 5 × 10−4 | 1.67 | 15.7 |
IV | Silt with sand | Upper aquitard | 10.0~12.0 | 0.54 | 0.3 | 5 × 10−4 | - | 16.2 |
V | Sand | Confined aquifer | 16.0~18.0 | 24 (Isotropy) | 2 × 10−4 | 1.50 | 19.0 | |
VI | Silty clay (dispersive) | Aquitard (partial) | 0.0~6.0 | 0.003 | 0.002 | 5 × 10−4 | 0.71 | 19.5 |
VII | Gravel | Confined aquifer | 4.0~6.0 | 40 | 40 | - | - | 17.0 |
IV | Granite | Aquitard | Bottom | - | - | - | - | 21.0 |
No. | Soil Layer | M (m) | kh (m/d) | kv (m/d) | Ss (1/m) |
---|---|---|---|---|---|
1 | Phreatic aquifer | 6 | 8.64 | 8.64 | - |
2 | Aquitard | 18 | 0.005 | 0.001 | 5 × 10−4 |
3 | Confined aquifer | 36 | 24 | 24 | 2 × 10−4 |
Section | Lp | Qs | α | β | η | Qd | Section | Lp | Qs | α | β | η | Qd |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
West | 0 | 0.634 | 0.76 | 1.60 | 1.18 | 0.916 | East | 0 | 0.601 | 0.76 | 1.52 | 1.02 | 0.711 |
2.5 | 0.575 | 0.76 | 1.60 | 0.99 | 0.699 | 2.5 | 0.549 | 0.76 | 1.52 | 0.94 | 0.598 | ||
4.5 | 0.529 | 0.76 | 1.60 | 0.94 | 0.604 | 4.5 | 0.507 | 0.76 | 1.52 | 0.90 | 0.533 | ||
6.5 | 0.482 | 0.76 | 1.60 | 0.90 | 0.531 | 6.5 | 0.466 | 0.76 | 1.52 | 0.88 | 0.478 | ||
8.5 | 0.435 | 0.76 | 1.60 | 0.88 | 0.468 | 8.5 | 0.424 | 0.76 | 1.52 | 0.87 | 0.427 | ||
10.5 | 0.372 | 0.76 | 1.60 | 0.87 | 0.393 | 10.5 | 0.363 | 0.76 | 1.52 | 0.86 | 0.361 | ||
12.5 | 0 | 0.76 | 1.60 | 0.86 | 0 | 12.5 | 0 | 0.76 | 1.52 | 0.85 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Lei, M.; Cao, C.; Shi, C. Dewatering Characteristics and Inflow Prediction of Deep Foundation Pits with Partial Penetrating Curtains in Sand and Gravel Strata. Water 2019, 11, 2182. https://doi.org/10.3390/w11102182
Liu L, Lei M, Cao C, Shi C. Dewatering Characteristics and Inflow Prediction of Deep Foundation Pits with Partial Penetrating Curtains in Sand and Gravel Strata. Water. 2019; 11(10):2182. https://doi.org/10.3390/w11102182
Chicago/Turabian StyleLiu, Linghui, Mingfeng Lei, Chengyong Cao, and Chenghua Shi. 2019. "Dewatering Characteristics and Inflow Prediction of Deep Foundation Pits with Partial Penetrating Curtains in Sand and Gravel Strata" Water 11, no. 10: 2182. https://doi.org/10.3390/w11102182
APA StyleLiu, L., Lei, M., Cao, C., & Shi, C. (2019). Dewatering Characteristics and Inflow Prediction of Deep Foundation Pits with Partial Penetrating Curtains in Sand and Gravel Strata. Water, 11(10), 2182. https://doi.org/10.3390/w11102182