Computationally Efficient Solution of a 2D Diffusive Wave Equation Used for Flood Inundation Problems
Abstract
:1. Introduction
2. Methods
2.1. Decomposition of the 2D Equation with the Splitting Method
2.2. Solution of the 1D Equation Using the FDM Explicit Scheme
- when the water depth is negative or zero, h ≤ 0,
- or when the water stage derivative takes a very small value, ∂H/∂s < ε, where ε represents the assumed tolerance, usually ranging from 10−6 to 10−9.
2.3. Solution of the 1D Equation Using Modified FEM with the Implicit Scheme
- for node j = 1
- for each internal node j = 2, 3, …, M − 1
- for node j = M
2.4. Solution of the System of Algebraic Equations
2.4.1. Solution of the Nonlinear System
2.4.2. Solution of the Linear System
- for row j = 1:
- for rows j = 2, 3, …, M − 1:
- for row j = M:
2.5. Parallelization and Solver Implementation
- (1)
- Bottom height values for the considered row or column are copied from the shared bottom variable Z and stored in the private variable z,
- (2)
- Water stage values from the previous computation step for the considered row or column are copied from the shared water stage variable H and written in the private variable H0,
- (3)
- Private variable S is used to create and then temporarily store the matrix ,
- (4)
- Product is stored in the private variable p,
- (5)
- Private variable S is used to create and store matrix ,
- (6)
- Vector is created and stored in the private variable f,
- (7)
- System (23) is solved and the solution result is written in the variable f,
- (8)
- Water stage vector is updated and stored in H0,
- (9)
- If the required solution accuracy is obtained, go to step 10, if not, return to step 5,
2.6. Measure of Efficiency
3. Results
3.1. One-Dimensional Flow, Horizontal Plane Wetting Test
- (1)
- Tolerance for the iterative process of the solution of the system of nonlinear equations: δ = 0.001 m,
- (2)
- Threshold for the water stage derivative in Equation (9a) ∂H/∂s = ∂H/∂x: ε = 10−9,
- (3)
- Maximum number of iterations in a simulation step is 50.
3.2. Two-Dimensional Flow, Parallel Computation for the Wetting-Drying Test
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Heniche, M.; Secretan, Y.; Boudreau, P.; Leclerc, M. A two-dimensional finite drying-wetting shallow water model for rivers and estuaries. Adv. Water Resour. 2000, 23, 359–372. [Google Scholar] [CrossRef]
- Horritt, M.S. Evaluating wetting and drying algorithms for finite element models of shallow water flow. Int. J. Numer. Methods Eng. 2002, 55, 835–851. [Google Scholar] [CrossRef]
- Begnudelli, L.; Sanders, B.F. Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying. J. Hydraul. Eng. ASCE 2006, 132, 371–384. [Google Scholar] [CrossRef]
- Liang, Q.; Borthwick, A.G.L. Adaptive quadtree simulation of shallow flow with wet-dry fronts over complex topography. Comput. Fluids 2009, 38, 221–234. [Google Scholar] [CrossRef]
- Szydłowski, M.; Kolerski, T.; Zima, P. Impact of the Artificial Strait in the Vistula Spit on the Hydrodynamics of the Vistula Lagoon (Baltic Sea). Water 2019, 11, 990. [Google Scholar] [CrossRef]
- Tan, W.Y. Shallow Water Hydrodynamics; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Song, L.; Zhou, J.; Guo, J.; Zou, Q.; Liu, Y. A robust well-balanced finite volume model for shallow water flows with wetting and drying over irregular terrain. Adv. Water Resour. 2011, 34, 1915–1932. [Google Scholar] [CrossRef]
- Vacondio, R.; Palù, A.D.; Mignosa, P. GPU-enhanced Finite Volume Shallow Water solver for fast flood simulations. Environ. Modell. Softw. 2014, 57, 60–75. [Google Scholar] [CrossRef]
- Oritz, P. Shallow water flows over flooding areas by a flux-corrected finite element method. J. Hydraul. Res. 2013, 52, 241–252. [Google Scholar] [CrossRef]
- Gourgue, O.; Comblen, R.; Lambrechts, J.; Kärnä, T.; Legat, V.; Deleersnijder, E. A flux-limiting wetting–drying method for finite-element shallow-water models, with application to the Scheldt Estuary. Adv. Water Resour. 2009, 32, 1726–1739. [Google Scholar] [CrossRef]
- Cimorelli, L.; Cozzolino, L.; Della Morte, R.; Pianese, D.; Singh, V.P. A new frequency domain analytical solution of a cascade of diffusive channels for flood routing. Water Resour. Res. 2015, 51, 2393–2411. [Google Scholar] [CrossRef]
- Cimorelli, L.; Cozzolino, L.; D’Aniello, A.; Pianese, D. Exact solution of the Linear Parabolic Approximation for flow-depth based diffusive flow routing. J. Hydrol. 2018, 563, 620–632. [Google Scholar] [CrossRef]
- Zhang, X.H.; Ishidaira, H.; Takeuchi, K.; Xu, Z.X.; Zhuang, X.W. An approach to inundation in large river basins using the triangle finite difference method. J. Environ. Inform. 2004, 3, 51–63. [Google Scholar] [CrossRef]
- Prestininzi, P. Suitability of the diffusive model for dam break simulation application to a CADAM experiment. J. Hydrol. 2008, 361, 172–185. [Google Scholar] [CrossRef]
- Moussa, R.; Bocquillon, C. On the use of the diffusive wave for modeling extreme flood events with overbank flow in the floodplain. J. Hydrol. 2009, 374, 116–135. [Google Scholar] [CrossRef]
- Hromadka, T.V.; Yen, C.C. A diffusion hydrodynamic model (DHM). Adv. Water Resour. 1986, 9, 118–170. [Google Scholar] [CrossRef]
- Han, K.Y.; Lee, J.T.; Park, J.H. Flood inundation analysis resulting from levee-break. J. Hydraul. Res. 1998, 36, 747–759. [Google Scholar] [CrossRef]
- Lal, A.M. Weighted implicit finite-volume model for overland flow. J. Hydraul. Eng. ASCE 1998, 124, 941–950. [Google Scholar] [CrossRef]
- Cea, L.; Garrido, M.; Puertas, J. Experimental validation of two-dimensional depth-averaged models for forecasting rainfall-runoff from precipitation data in urban areas. J. Hydrol. 2010, 382, 88–102. [Google Scholar] [CrossRef]
- Di Giammarco, P.; Todini, E.; Lamberti, P. A conservative finite elements approach to overland flow: The control volume finite element formulation. J. Hydrol. 1996, 175, 267–291. [Google Scholar] [CrossRef]
- Arico, C.; Sinagra, M.; Begnudelli, L.; Tucciarelli, T. MAST-2D diffusive model for flood prediction on domains with triangular Delaunay unstructured meshes. Adv. Water Resour. 2011, 34, 1427–1449. [Google Scholar] [CrossRef] [Green Version]
- Szymkiewicz, R.; Gąsiorowski, D. Simulation of unsteady flow over floodplain using the diffusive wave equation and the modified finite element. J. Hydrol. 2012, 464–465, 165–167. [Google Scholar] [CrossRef]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics; Springer: Berlin, Germany, 1997. [Google Scholar]
- LeVeque, R.J. Finite Volume Methods for Hyperbolic Problems; Cambridge University Press: Cambridge, MA, USA, 2002. [Google Scholar] [CrossRef]
- Neal, J.C.; Fewtrell, T.J.; Bates, P.D.; Wright, N.G. A comparison of three parallelisation methods for 2D flood inundation models. Environ. Modell. Softw. 2010, 25, 398–411. [Google Scholar] [CrossRef]
- Yu, D. Parallelization of a two-dimensional flood inundation model based on domain decomposition. Environ. Modell. Softw. 2010, 25, 935–945. [Google Scholar] [CrossRef] [Green Version]
- Gąsiorowski, D. Analysis of floodplain inundation using 2D nonlinear diffusive wave equation solved with splitting technique. Acta Geophys. 2013, 61, 668–689. [Google Scholar] [CrossRef]
- Hsu, M.H.; Chen, S.H.; Chang, T.J. Inundation simulation for urban drainage basin with storm sewer system. J. Hydrol. 2000, 234, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods. Recent advances and uncertainty analysis. Environ. Modell. Softw. 2017, 90, 210–216. [Google Scholar] [CrossRef]
- Bates, P.D.; De Roo, A.P.J. A simple raster-based model for flood inundation simulation. J. Hydrol. 2000, 236, 54–77. [Google Scholar] [CrossRef]
- Yu, D.; Lane, S.N. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment. part 1: Mesh resolution effects. Hydrol. Process. 2006, 20, 1541–1565. [Google Scholar] [CrossRef]
- Neal, J.; Fewtrell, T.; Trigg, M. Parallelisation of storage cell flood models using OpenMP. Environ. Modell. Softw. 2009, 24, 872–877. [Google Scholar] [CrossRef]
- Prestininzi, P.; Di Baldassarre, G.; Schumann, G.; Bates, P.D. Selecting the appropriate hydraulic model structure using low-resolution satellite imagery. Adv. Water Resour. 2011, 34, 38–46. [Google Scholar] [CrossRef]
- Leandro, J.; Chen, A.S.; Schumann, A. A 2D parallel diffusive wave model for floodplain inundation with variable time step (P-DWave). J. Hydrol. 2014, 517, 250–259. [Google Scholar] [CrossRef]
- Hunter, N.M.; Horritt, M.S.; Bates, P.D.; Wilson, M.D.; Werner, G.F. An adaptive time step solution for raster-based storage cell modeling of floodplain inundation. Adv. Water Resour. 2005, 28, 975–991. [Google Scholar] [CrossRef]
- Bates, P.D.; Horrit, M.S.; Fewtrell, T.J. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modeling. J. Hydrol. 2010, 387, 33–45. [Google Scholar] [CrossRef]
- Dazzi, S.; Vacondio, R.; Dal Palù, A.; Mignosa, P. A local time stepping algorithm for GPU-accelerated 2D shallow water models. Adv. Water Resour. 2018, 111, 274–288. [Google Scholar] [CrossRef]
- Feng, K.; Molz, F.J. A 2-D, diffusion based, wetland flow model. J. Hydrol. 1997, 196, 230–250. [Google Scholar] [CrossRef]
- Gąsiorowski, D.; Szymkiewicz, R. Mass and momentum conservation in the simplified flood routing models. J. Hydrol. 2007, 346, 51–58. [Google Scholar] [CrossRef]
- Gąsiorowski, D. Impact of diffusion coefficient averaging on solution accuracy of the 2D nonlinear diffusive wave equation for floodplain inundation. J. Hydrol. 2014, 517, 923–935. [Google Scholar] [CrossRef]
- Lal, A.M. Performance comparison of overland flow algorithms. J. Hydraul. Eng. ASCE 1998, 124, 342–349. [Google Scholar] [CrossRef]
- Fletcher, C.A.J. Computational Techniques for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1991; Volume I. [Google Scholar]
- Szymkiewicz, R. Method to solve 1D unsteady transport and flow equations. J. Hydraul. Eng. ASCE 1995, 121, 396–403. [Google Scholar] [CrossRef]
- Szymkiewicz, R. Numerical Modeling in Open Channel Hydraulics; Water Science and Technology Library; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Dahlquist, G.; Bjorck, A. Numerical Methods; Prentice-Hall: Englewood Cliffs, NJ, USA, 1974. [Google Scholar]
- Lin, C.A.; Ecer, A.; Periaux, J.; Satofuka, N.; Fox, P. Parallel Computational Fluid Dynamics. In Development and Applications of Parallel Technology; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Chow, V.T. Open Channel Hydraulics; McGraw-Hill Book Company: New York, NY, USA, 1959. [Google Scholar]
Spatial Step Δx | Explicit | Implicit | |||||
---|---|---|---|---|---|---|---|
Time Step min/max Δt | RMSE | Time Step Δt | RMSE | ||||
θ = 0.5 | θ = 0.6 | θ = 0.8 | θ = 1.0 | ||||
(m) | (s) | (10−3 m) | (s) | (10−3 m) | (10−3 m) | (10−3 m) | (10−3 m) |
2 | 0.00067/2 | 2.09 | 2 | 1.43 | 5.45 | 12.66 | 18.64 |
5 | 0.00420/5 | 2.64 | 5 | 1.58 | 10.61 | 24.89 | 36.26 |
10 | 0.01690/10 | 4.73 | 10 | 3.55 | 18.70 | 41.55 | 59.77 |
Spatial Step Δx | Constant Time Step | Adaptive Time Step (ATS) | Relative Effic. ΔE | ||||||
---|---|---|---|---|---|---|---|---|---|
Time Step Δt | RMSE | Comp. Time TS | Comp. Effic. EE | Time Step Min/Max Δt | RMSE | Comp. Time TS | Comp. Effic. EEA | ||
(m) | (s) | (10−3 m) | (s) | (m−1s−1) | (s) | (10−3 m) | (s) | (m−1s−1) | (%) |
2 | 0.0006 | 2.05 | 67.89 | 7.2 | 0.0006/2 | 2.09 | 53.46 | 8.9 | 23.6 |
5 | 0.0042 | 1.92 | 4.35 | 119.9 | 0.0042/5 | 2.64 | 3.53 | 106.9 | −10.8 |
10 | 0.0169 | 1.31 | 0.55 | 1386.7 | 0.0169/10 | 4.73 | 0.45 | 469.0 | −66.2 |
Spatial Step x | Explicit Adaptive Time Step (ATS) | Implicit | Relative Effic. ΔE | ||||||
---|---|---|---|---|---|---|---|---|---|
Time Step min/max t | RMSE | Comp. Time TS | Effic. EEA | Time Step Δt | RMSE | Comp. Time TS | Effic. EI | ||
(m) | (s) | (10−3 m) | (s) | (m−1 s−1) | (s) | (10−3 m) | (s) | (m−1 s−1) | (%) |
2 | 0.0006/2 | 2.09 | 53.46 | 8.9 | 2 | 1.42 | 0.16 | 4386 | 49,105 |
5 | 0.0042/5 | 2.64 | 3.53 | 106.9 | 5 | 1.58 | 0.03 | 21,059 | 19,590 |
10 | 0.0169/10 | 4.73 | 0.45 | 469.0 | 10 | 3.55 | 0.01 | 28,158 | 5303 |
No. Elements | Spatial Step Δx = Δy | Time Step Δt | RMSE | No. CPU Proc. | Comp. Time TS | Speed Up S | Parallel Effic. EP |
---|---|---|---|---|---|---|---|
(-) | (m) | (s) | (m) | (-) | (s) | (-) | (-) |
100 × 100 | 10 | 2.5 | 0.026 | 1 | 87.59 | 1.00 | 1.00 |
2 | 50.17 | 1.75 | 0.87 | ||||
4 | 30.35 | 2.89 | 0.72 | ||||
8 | 23.04 | 3.80 | 0.48 | ||||
200 × 200 | 5 | 1.25 | 0.036 | 1 | 627.99 | 1.00 | 1.00 |
2 | 346.80 | 1.81 | 0.91 | ||||
4 | 202.73 | 3.09 | 0.77 | ||||
8 | 140.17 | 4.48 | 0.56 | ||||
500 × 500 | 2 | 0.5 | 0.035 | 1 | 9047.14 | 1.00 | 1.00 |
2 | 5245.99 | 1.72 | 0.86 | ||||
4 | 2959.87 | 3.06 | 0.76 | ||||
8 | 1996.98 | 4.53 | 0.57 | ||||
1000 × 1000 | 1 | 0.25 | 0.027 | 1 | 73,267.80 | 1.00 | 1.00 |
2 | 40,659.70 | 1.80 | 0.90 | ||||
4 | 24,075.80 | 3.04 | 0.76 | ||||
8 | 15,064.30 | 4.86 | 0.61 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artichowicz, W.; Gąsiorowski, D. Computationally Efficient Solution of a 2D Diffusive Wave Equation Used for Flood Inundation Problems. Water 2019, 11, 2195. https://doi.org/10.3390/w11102195
Artichowicz W, Gąsiorowski D. Computationally Efficient Solution of a 2D Diffusive Wave Equation Used for Flood Inundation Problems. Water. 2019; 11(10):2195. https://doi.org/10.3390/w11102195
Chicago/Turabian StyleArtichowicz, Wojciech, and Dariusz Gąsiorowski. 2019. "Computationally Efficient Solution of a 2D Diffusive Wave Equation Used for Flood Inundation Problems" Water 11, no. 10: 2195. https://doi.org/10.3390/w11102195
APA StyleArtichowicz, W., & Gąsiorowski, D. (2019). Computationally Efficient Solution of a 2D Diffusive Wave Equation Used for Flood Inundation Problems. Water, 11(10), 2195. https://doi.org/10.3390/w11102195