Evaluation of Hydroclimatic Variability and Prospective Irrigation Strategies in the U.S. Corn Belt †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Irrigation Strategies
- Rainfed (S1_RF): consists of no water application to simulate rainfed agriculture. This is used as a reference and is expected to produce a lower limit of yields.
- Full supplemental irrigation (S2_SFI): triggers the irrigation of a predefined amount of water when the soil water deficit is above a certain threshold. The full irrigation assumes an unlimited amount of water availability. This strategy is expected to consume the maximum amount of water while achieving the yield potential.
- Simple Deficit irrigation (S3_DI): triggers irrigation of a predefined amount of water when the soil water deficit is above a threshold which already causes drought stress for the crop. This irrigation strategy is a simple implementation of deficit irrigation. It is expected that S3_DI consumes less water than S2_SFI, but full irrigation cannot be applied when water availability is constrained or limited. S3_DI serves as a non-optimized deficit irrigation strategy which is compared with other optimized deficit irrigation strategies.
- Constant supplemental irrigation in a fixed schedule (S4_CFS): realizes a fixed application depth of water for a fixed irrigation interval of days (e.g., 7 days between applications). This deficit irrigation strategy can deal with limited given water volumes but implements a non-optimized strategy which is expected to achieve a low yield.
- Optimized deficit irrigation with decision table (S5_ODT): is a closed-loop irrigation control based on information about the available water and the water deficit in the soil. For daily decisions, a decision table is optimized for maximizing water productivity. The optimizer was implemented using Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) for nonlinear function minimization, Version 3.61. Beta [53].
- Optimized deficit irrigation with a decision table and phenological stages (S6_ODTph): implements a modified decision table based on the crop response to water stress at the specific phenological stages throughout the growing season. The optimizing process was also implemented using CMA-ES.
- Optimized deficit irrigation with Global Evolutionary Technique for Optimal Irrigation Scheduling (GET-OPTIS) (S7_GO): is an open-loop irrigation control that implements a general irrigation calendar which is valid for all growing seasons of a considered time series. The implementation is based on the tailor-made evolutionary GET-OPTIS algorithm developed by Schütze et al. [38]. This strategy allows for a simpler application in practice than S5_ODT and S6_ODTph since no information about the water deficit in the soil is required.
2.4. Model Framework
2.5. Experimental Design of Model Simulations
2.5.1. Hydroclimatic Variability Analysis
2.5.2. Model Performance Metrics
2.5.3. Evaluation of Irrigation Strategies
3. Results and Discussion
3.1. Hydroclimatic Variability Analysis
3.2. Model Performance Metrics
3.3. Results of Evaluation of Irrigation Strategies
3.4. Summary of Discussion
3.5. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CWP | Crop Water Productivity |
US | United States of America |
SCWPF | Stochastic Crop Water Production Functions |
SWB | Simple Soil-Water Balance Model for Irrigated Areas |
CMA-ES | Evolution Strategy with Covariance Matrix Adaptation |
GET-OPTIS | Global evolutionary Technique for Optimal Irrigation Scheduling |
S1_RF | Rainfed irrigation |
S3_DI | Simple deficit irrigation |
S4_CFS | Constant supplemental irrigation in a fixed schedule |
S5_ODT | Optimized deficit irrigation with decision table |
S6_ODTph | Optimized deficit irrigation with decision table with phenological stages |
S7_GO | Optimized deficit irrigation with GET-OPTIS |
MAE | Mean Absolute Error |
References
- Niyogi, D.; Liu, X.; Andresen, J.; Song, Y.; Jain, A.K.; Takle, O.K.E.S.; Doering, O.C. Crop Models Capture the Impacts of Climate Variability on Corn Yield. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef]
- Brumbelow, K.; Georgakakos, A. Consideration of Climate Variability and Change in Agricultural Water Resource Planning. J. Water Resour. Plan. Manag. 2007, 133, 275–285. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Mueller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison. Proc. Natl. Acad. Sci. USA 2014, 3268–3273. [Google Scholar] [CrossRef] [PubMed]
- Elliot, J.; Deryng, D.; Muller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Florke, M.; Wada, Y.; Best, N. Constraints and Potentials of Future Irrigation Water Availability on Agricultural Production under Climate Change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef]
- Pereira, L.S. Higher Performance through Combined Improvements in Irrigation Methods and Scheduling: A Discussion. Agric. Water Manag. 1999, 40, 153–169. [Google Scholar] [CrossRef]
- Gorantiwar, S.D.; Smout, I.K. Allocation of Scarce Water Resources Using Deficit Irrigation in Rotational Systems. J. Irrig. Drain. Eng. 2003, 129, 155–163. [Google Scholar] [CrossRef]
- Dobermann, A.; Nelson, R.; Beever, D.; Bergvinson, D.; Crowley, E.; Denning, G.; Griller, K.; d’Arros Hughes, J.; Jahn, M.; Lynam, J. Solutions for Sustainable Agriculture and Food Systems—Technical Report for the Post-2015 Development Agenda; Technical Report; The United Nations Sustainable Development Solutions Network: New York, NY, USA, 2013. [Google Scholar]
- Godfray, H.C.J.; Garnett, T. Food Security and Sustainable Intensification. Philosophical Transactions of the Royal Society of London. Ser. B Biol. Sci. 2014, 369, 1–10. [Google Scholar] [CrossRef]
- Rockstrom, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; De Clerck, F.; Shah, M.; Steduto, P. Sustainable Intensification of Agriculture for Human Prosperity and Global Sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef]
- Karl, T.; Melillo, J.; Peterson, T.; Hassol, S.J. Global Climate Impacts in the United States, 1st ed.; Cambridge University Press: Washington, DC, USA, 2009; p. 196. [Google Scholar]
- Evett, S.R.; Tolk, J.A. Introduction: CanWater Use Efficiency Be ModeledWell Enough to Impact Crop Management? Agron. J. 2009, 101, 423–425. [Google Scholar] [CrossRef]
- Raju, K.; Kumar, D. Irrigation Planning Using Genetic Algorithms. Water Resour. Manag. 2004, 18, 163–176. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit Irrigation for Reducing Agricultural Water Use. J. Exp. Bot. 2007, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Manning, D.T.; Lurbe, S.; Comas, L.H.; Trout, T.J.; Flynn, N.; Fonte, S.J. Economic Viability of Deficit Irrigation in the Western US. Agric. Water Manag. 2018. [Google Scholar] [CrossRef]
- Cai, X.; Rosegrant, M.W. Water Productivity in Agriculture: Limits and Opportunities for Improvement; Chapter WorldWater Productivity: Current Situation and Future Options; CABI: Colombo, Sri Lanka, 2003; p. 332. [Google Scholar]
- Vaux, H.; Howitt, R. Managing Water Scarcity: An Evaluation of Interregional Transfers. Water Resour. Res. 1984, 20, 785–792. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Economic Considerations of Deficit Irrigation. J. Irrig. Drain. Eng. 1984, 110, 343–358. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop-the FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef]
- English, M.; Solomon, K.; Hoffman, G. A Paradigm Shift in Irrigation Management. J. Irrig. Drain. Eng. 2002, 128, 267–277. [Google Scholar] [CrossRef]
- Brown, P.D.; Cochrane, T.A.; Krom, T.D.; Painter, D.J.; Bright, J.C. Optimal On-Farm Multicrop Irrigation Scheduling with LimitedWater Supply. In Proceedings of the 4th World Congress on Computers in Agriculture and Natural Resources, Orlando, FL, USA, 24–26 July 2006. [Google Scholar] [CrossRef]
- Shang, S.; Li, X.; Mao, X.; Lei, Z. Simulation of Water Dynamics and Irrigation Scheduling for Winter Wheat and Maize in Seasonal Frost Areas. Agric. Water Manag. 2004, 68, 117–133. [Google Scholar] [CrossRef]
- Jones, H.G. Irrigation Scheduling: Advantages and Pitfalls of Plant-based Methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Rathje, W.R.; Martin, D.L.; Eisenhauer, D.E. Maize Evapotranspiration, Yield Production Functions, Biomass, Grain Yield, Harvest Index, and Yield Response Factors under Full and Limited Irrigation. Trans. ASABE 2013, 56, 273–293. [Google Scholar] [CrossRef]
- Badh, A.; Akyuz, A.; Vocke, G.; Mullins, B. Impact of Climate Change on the Growing Seasons in Select Cities of North Dakota, United States of America. Int. J. Clim. Chang. 2009, 1, 105–118. [Google Scholar] [CrossRef]
- Gunn, K.M.; Baule, W.J.; Frankenberger, J.R.; Gamble, D.L.; Allred, B.J.; Andresen, J.A.; Brown, L.C. Modeled Climate Change Impacts on Subirrigated Maize Relative Yield in Northwest Ohio. Agric. Water Manag. 2018, 206, 56–66. [Google Scholar] [CrossRef]
- Messina, C.D.; Sinclair, T.R.; Hammer, G.L.; Curan, D.; Thompson, J.; Oler, Z.; Gho, C.; Cooper, M. Limited Transpiration Trait May Increase Maize Drought Tolerance in the US Corn Belt. Agron. J. Abstr. Biometry Model. Stat. 2015, 107, 1978–1986. [Google Scholar] [CrossRef]
- Niyogi, D.; Kellner, O. Climate Variability and the U.S. Corn Belt: Enso and AO Episode-dependent Hydroclimatic Feedbacks to Corn Production at Regional and Local Scales. Earth Interact. 2015, 6, 1–32. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Gassman, P.W.; Jha, M.K.; Kling, C.L.; Campbell, T.; Srinivasan, R.; White, M.; Arnold, J.G. A Refined Regional Modeling Approach for the Corn Belt—Experiences and Recommendations for Large-Scale Integrated Modeling. J. Hydrol. 2015, 524, 348–366. [Google Scholar] [CrossRef]
- Zwart, S.; Bastiaanssen, W. Review of Measured CropWater Productivity Values for Irrigated Wheat, Rice, Cotton and Maize. Agric. Water Manag. 2004, 69, 115–133. [Google Scholar] [CrossRef]
- English, M.; Raja, S.N. Perspectives on Deficit Irrigation. Agric. Water Manag. 1996, 32, 1–14. [Google Scholar] [CrossRef]
- Kloss, S.; Pushpalatha, R.; Kamoyo, K.J.; Schutze, N. Evaluation of Crop Models for Simulating and Optimizing Deficit Irrigation Systems in Arid and Semi-arid Countries under Climate Variability. Water Resour. Manag. 2017, 26, 997–1014. [Google Scholar] [CrossRef]
- Gadedjisso Tossou, A.; Avellan, T.; Schütze, N. Potential of Deficit and Supplemental Irrigation under Climate Variability in Northern Togo, West Africa. Water 2018, 10, 803. [Google Scholar] [CrossRef]
- Yang, H.; Dobermann, A.; Lindquist, J.L.; Walters, D.T.; Arkebauer, T.J.; Cassman, K.G. Hybrid-Maize—A Maize Simulation Model That Combines Two Crop Modeling Approaches. Field Crop. Res. 2004, 87, 131–154. [Google Scholar] [CrossRef]
- Song, Y.; Jain, A.; McIssac, G. Implementation of Dynamic Crop Growth Processes into a Land Surface Model: Evaluation of EnergyWater and Carbon Fluxes under Corn and Soybean Rotation. Biogeosciences 2013, 10, 8039–8066. [Google Scholar] [CrossRef] [Green Version]
- Nangia, V.; Oweis, T.; Kemeze, F.H.; Schnetzer, J. Supplemental Irrigation: A Promising Climate-Smart Practice for Dryland Agriculture; Practice Briefs of the Global Alliance for Climate-Smart Agriculture (GACSA): Wageningen, The Netherlands, 2018. [Google Scholar]
- Zhang, D.; Li, R.; Batchelor, W.D.; Ju, H.; Li, Y. Evaluation of limited irrigation strategies to improve water use efficiency and wheat yield in the North China Plain. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timothy Foster, N.B.; Butler, A.P. Modeling Irrigation Behavior in Groundwater Systems. Water Resour. Res. 2014. [Google Scholar] [CrossRef] [Green Version]
- Schütze, N.; Schmitz, G.H. OCCASION: New Planning Tool for Optimal Climate Change Adaption Strategies in Irrigation. J. Irrig. Drain. Eng. 2010, 136, 836–846. [Google Scholar] [CrossRef]
- Schütze, N.; De Paly, M.; Shamir, U. Novel Simulation-based Algorithms for Optimal Open-Loop and Closed-loop Shceduling of Deficit Irrigation Sytems. J. Hydroinform. 2012, 14, 136–151. [Google Scholar] [CrossRef]
- Koech, R.; Langat, P. Improving Irrigation Water Use Efficiency: A Review of Advances, Challenges and Opportunities in the Australian Context. Water 2018, 10, 1771. [Google Scholar] [CrossRef] [Green Version]
- Corn Production. USDA Economics, Statistics and Market Information System. 2018. Available online: https://www.nass.usda.gov (accessed on 8 October 2019).
- Takle, E.S.; Anderson, C.J.; Adresen, J.; Angel, J.; Elmore, R.W.; Gramig, B.M.; Guinan, P.; Hilberg, S.; Kluck, D.; Massey, R.; et al. Climate Forecast for Corn Producer Decision Making. Earth Interact. 2014, 18, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Andresen, J.; Yang, H.; Niyogi, D. Calibration and Validation of the Hybrid-Maize Crop Model for Regional Analysis and Application over the U.S. Corn Belt. Earth Interact. 2015, 19, 19. [Google Scholar] [CrossRef]
- National Agricultural Statistics Service (NASS). Data Visualization; Technical Report; United States Department of Agriculture (USDA): Washington, DC, USA, 2018.
- Mearns, L.; McGinnis, S.; Arritt, R.; Biner, S.; Duffy, P.; Gutowski, W.; Held, I.; Jones, R.; Leung, R.; Nunes, A.; et al. The North American Regional Climate Change Assessment Program Dataset. EOS 2014. [Google Scholar] [CrossRef]
- Mearns, L.O.; Gutowski, W.; Jones, R.; Leung, R.; McGinnis, S.; Nunes, A.; Qian, Y. A Regional Climate Change Assessment Program for North America. EOS 2009, 90, 311–312. [Google Scholar] [CrossRef]
- Mearns, L.O.; Arritt, R.; Biner, S.; Bukovsky, M.S.; McGinnis, S.; Sain, S.; Caya, D.; Correia, J.; Flory, D.; Snyder, M.; et al. The North American Regional Climate Change Assessment Program: Overview of Phase I Results. Bull. Am. Meteorol. Soc. 2012, 93, 1337–1362. [Google Scholar] [CrossRef]
- Mearns, L.O.; Lettenmaier, D.P.; McGinnis, S. Uses of Results of Regional Climate Model Experiments for Impacts and Adaptation Studies: The Example of NARCCAP. Curr. Clim. Chang. Rep. 2015, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Horton, R.M.; Coffel, E.D.; Winter, J.M.; Bader, D.A. Projected Changes in Extreme Temperature Events Based on the NARCAAP Model Suite. Geophys. Res. Lett. 2015, 42, 7722–7731. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Newman, J.E. National Corn Handbook; Climate & Weather, Purdue University: West Lafayette, IN, USA, 1990. [Google Scholar]
- Field Crops Usual Planting and Harvesting Dates. UNational Agricultural Statistics Service. 2010. Available online: https://usda.library.cornell.edu/concern/publications/vm40xr56k (accessed on 8 October 2019).
- Hansen, N.; Kern, S. Evaluating the CMA Evolution Strategy on Multimodal Test Functions. In Proceedings of the Eighth International Conference on Parallel Problem Solving from Nature PPSN VIII, Birmingham, UK, 18–22 September 2004; Springer: Berlin, Germany, 2004; pp. 282–291. [Google Scholar] [CrossRef]
- Mialyk, O.; Schutze, N. Deficit Irrigation Toolbox; Technical Report; Dresden University of Technology: Dresden, Germany, 2019. [Google Scholar]
- Rao, N.H. Field Test of a Simple Soil-water Balance Model for Irrigated Areas. J. Hydrol. 1987, 91, 179–186. [Google Scholar] [CrossRef]
- Grundmann, J.; Schütze, N.; Schmitz, G.H.; Al-Shaqsi, S. Towards an Integrated Arid Zone Water Management Using Simulation-based Optimization. Environ. Earth Sci. 2012, 65, 1381–1394. [Google Scholar] [CrossRef]
- Schütze, N.; Wöhling, T.; de Paly, M.; Schmitz, G. Global Optimization of Deficit Irrigation Systems Using Evolutionary Algorithms. In Proceedings of the XVI International Conference on Computational Methods in Water Resources, Copenhagen, Denmark, 18–22 June 2006. [Google Scholar] [CrossRef]
- Rao, N.H.; Sarma, P.B.S.; Chander, S. Irrigation Scheduling under a Limited Water Supply. Agric. Water Manag. 1988, 15, 165–175. [Google Scholar] [CrossRef]
- Rao, N.H.; Sarma, P.B.S.; Chander, S. Real-time Adaptive Irrigation Scheduling under a Limited Water Supply. Agric. Water Manag. 1992, 20, 267–279. [Google Scholar] [CrossRef]
- Panigrahi, B.; Panda, S.N. Field Test of a SoilWater Balance Simulation Model. Agric. Water Manag. 2003, 58, 223–240. [Google Scholar] [CrossRef]
- Khan, J.N.; Jain, A.K. Modeling Optimal Irrigation Scheduling under Conjunctive Use of CanalWater and Poor Quality Groundwater in Semi-Arid Region of Northwestern India. Agric. Eng. Int. CIGR J. 2015, 14, 1–13. [Google Scholar]
- Gassmann, M.; Gardiol, J.; Serio, L. Performance Evaluation of Evapotranspiration Estimations in a Model of Soil Water Balance. Meteorol. Appl. 2010, 18, 211–222. [Google Scholar] [CrossRef]
- De Paly, M.; Schütze, N.; Zell, A. Determining Crop-production Functions Using Multi-Objective Evolutionary Algorithms. In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010. [Google Scholar] [CrossRef]
- Alter, R.E.; Douglas, H.C.; Winter, J.M.; Elfatih, A.B.E. Twentieth Century Regional Climate Change during the Summer in the Central United States Attributed to Agricultural Intensification. Geophys. Res. Lett. 2017. [Google Scholar] [CrossRef]
- Pryor, S.C.; Scavia, D.; Downer, C.; Gaden, M.; Iverson, L.; Nordstrom, R.; Patz, J.; Robertson, G.P. Midwest. Climate Change Impacts in the United States: The third national climate assessment. In National Climate Assessment Report; Melillo, J.M., Richmond, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 418–440. [Google Scholar]
- Dai, S.; Shulski, M.D.; Hubbard, K.G.; Takle, E.S. A Spatiotemporal Analysis of Midwest US Temperature and Precipitation Trends during the Growing Season From1980 to 2013. Int. J. Climatol. 2016, 36, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Van Dop, M.; Gramig, B.M.; Sesmero, J.P. Irrigation Adoption, Groundwater Demand and Policy in the U.S. Corn Belt, 2040–2070. Marster’s Thesis, Purdue University, West Lafayette, IN, USA, 2016. [Google Scholar]
- Motiee, H.; McBean, E. An Assessment of Long-Term Trends in Hydrologic Components and Implications forWater Levels in Lake Superior. Hydrol. Res. 2009, 40, 564–579. [Google Scholar] [CrossRef]
- Van Wart, J.; Grassini, P.; Yang, H.; Claessens, L.; Jarvis, A.; Cassman, K.G. Creating Long-term Weather Data from Thin Air for Crop Simulation Modeling. Agric. For. Meteorol. 2015, 209–210, 49–58. [Google Scholar] [CrossRef]
- Basso, B.; Ritchie, J.T. Evapotranspiration in High-Yielding Maize and under Increased Vapor Pressure Deficit in the US Midwest. Agric. Environ. Lett. 2018, 3, 170039. [Google Scholar] [CrossRef]
# | Code | Site | County | State | Area Harvested [×1000 ha] | Irrigated Area [%] |
---|---|---|---|---|---|---|
1 | W1 | Kirksville | Adair | Missouri | 5.73 | NDD |
2 | W2 | Topeka | Shawnee | Kansas | 15.29 | 31 |
3 | W3 | New Madrid | New Madrid | Missouri | 27.51 | 79 |
4 | W4 | Olivia | Renville | Minnesota | 43.97 | <0.1 |
5 | W5 | Brookings | Brookings | South Dakota | 47.87 | 8 |
6 | W6 | Iowa City | Johnson | Iowa | 55.44 | NDD |
7 | W7 | Grand Forks | Grand Forks | North Dakota | 56.30 | 4 |
8 | W8 | Columbus | Platte | Nebraska | 75.72 | 67 |
9 | W9 | Rochester | Olmsted | Minnesota | 115.32 | <0.1 |
Total | 443.16 | 19 | ||||
10 | E1 | Marysville | Union | Ohio | 8.88 | NDD |
11 | E2 | Toledo | Lucas | Ohio | 29.02 | NDD |
12 | E3 | Huntington | Huntington | Indiana | 30.41 | <1 |
13 | E4 | Baraboo | Sauk | Wisconsin | 32.65 | 19 |
14 | E5 | DeKalb | DeKalb | Illinois | 50.44 | <0.01 |
15 | E6 | Beloit | Rock | Wisconsin | 60.59 | 7 |
16 | E7 | Rensselaer | Jasper | Indiana | 62.99 | 9 |
17 | E8 | Tuscola | Douglas | Illinois | 104.2 | <1 |
Total | 379.19 | 5 |
Site | Code | Observed Yield [tons/ha] | Predicted Yield [tons/ha] | Mean Absolute Error [tons/ha] | ||
---|---|---|---|---|---|---|
Average | Std. Dev | Average | Std. Dev | |||
New Madrid | W3 | 9.72 | 1.23 | 8.87 | 1.64 | 1.78 |
Topeka | W2 | 7.77 | 1.46 | 7.53 | 1.83 | 0.94 |
Kirksville | W1 | 6.96 | 2.10 | 7.24 | 1.52 | 2.11 |
Columbus | W8 | 9.08 | 1.85 | 9.30 | 2.04 | 2.16 |
Brookings | W5 | 7.25 | 2.07 | 7.33 | 1.87 | 2.47 |
Grand Forks | W7 | 5.96 | 1.67 | 6.86 | 1.87 | 1.94 |
Iowa City | W6 | 8.89 | 2.16 | 7.52 | 1.77 | 2.23 |
Olivia | W4 | 9.51 | 2.08 | 9.72 | 1.83 | 1.49 |
Rochester | W9 | 9.51 | 2.07 | 8.99 | 2.39 | 2.11 |
Baraboo | E4 | 8.42 | 1.37 | 8.50 | 1.48 | 1.40 |
Beloit | E6 | 8.87 | 1.52 | 8.91 | 1.84 | 1.21 |
DeKalb | E5 | 9.96 | 1.62 | 9.84 | 2.59 | 1.98 |
Rensselaer | E7 | 8.93 | 2.00 | 8.61 | 2.20 | 1.98 |
Tuscola | E8 | 9.69 | 1.78 | 9.29 | 2.27 | 1.76 |
Huntington | E3 | 8.83 | 1.70 | 8.29 | 2.14 | 1.52 |
Marysville | E1 | 8.49 | 2.01 | 9.14 | 1.81 | 2.04 |
Toledo | E2 | 9.39 | 1.68 | 9.55 | 2.24 | 1.69 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orduña Alegría, M.E.; Schütze, N.; Niyogi, D. Evaluation of Hydroclimatic Variability and Prospective Irrigation Strategies in the U.S. Corn Belt. Water 2019, 11, 2447. https://doi.org/10.3390/w11122447
Orduña Alegría ME, Schütze N, Niyogi D. Evaluation of Hydroclimatic Variability and Prospective Irrigation Strategies in the U.S. Corn Belt. Water. 2019; 11(12):2447. https://doi.org/10.3390/w11122447
Chicago/Turabian StyleOrduña Alegría, María Elena, Niels Schütze, and Dev Niyogi. 2019. "Evaluation of Hydroclimatic Variability and Prospective Irrigation Strategies in the U.S. Corn Belt" Water 11, no. 12: 2447. https://doi.org/10.3390/w11122447
APA StyleOrduña Alegría, M. E., Schütze, N., & Niyogi, D. (2019). Evaluation of Hydroclimatic Variability and Prospective Irrigation Strategies in the U.S. Corn Belt. Water, 11(12), 2447. https://doi.org/10.3390/w11122447