Applications of Bayesian Networks as Decision Support Tools for Water Resource Management under Climate Change and Socio-Economic Stressors: A Critical Appraisal
Abstract
:1. Introduction
1.1. Contextual Background
1.2. Bayesian Networks
- (1)
- Problem scoping: Identify challenges confronting the management of water systems by collecting and analysing historical data on key drivers to understand problems in the systems under study.
- (2)
- Define model objectives: Identify the aim of the model (e.g., optimisation of appropriate management measures, or understanding relationships among key variables of the system) and select stakeholders to involve in the modelling process.
- (3)
- Conceptual model development: Identify the important system variables (including management measures and their attribute values) and their relationships in the system. Identification of this information may be based on a literature review, historical data analysis, and consultation with stakeholders.
- (4)
- Quantification of conditional relationships: Assign states and probabilities to each variable in the system using historical data, other modelling results, and elicitation from stakeholders.
- (5)
- Model evaluation and testing: The model can be evaluated and tested using quantitative methods (e.g., sensitivity analysis and assessments of predictive accuracy) and/or qualitative methods (e.g., feedback from experts).
- (6)
- Scenario analysis: BNs can be used as decision support tools because they allow an assessment of the probability of changes in the states of response or target nodes in the system, associated with management measures or scenarios contained in the model.
2. Methods
2.1. Systematic Quantitative Literature Review
- (i)
- Institutional and social measures: i.e., the inclusion of economic and social instruments, laws, regulations, policies and educational programs (e.g., water prices, water rights, and awareness raising)
- (ii)
- Technological and engineered measures: i.e., the inclusion of technologies and methods (e.g., new crops, water-saving technology, irrigation efficiency technology), and constructions (e.g., desalination plants, wastewater treatment, reservoirs and rainwater tanks)
- (iii)
- Ecosystem-based measures: i.e., the inclusion of green infrastructure and ecosystem services (e.g., forest cover, riparian planting and restoration)
2.2. Statistical Analysis
3. Results
3.1. Research Aims of the Reviewed Studies
3.2. Type of Adaptation Options
3.3. Use of Quantitative and Qualitative Data
3.4. Decision Making Support Approaches and Evaluation of Management Options of the Reviewed Studies
3.5. Discussion and Recommendations
- (1)
- Where possible, empirical data should be used to construct and validate BNs to increase model performance and assist in identifying robust adaptation options.
- (2)
- Model parameterization and the estimation of the costs and benefits of all the different categories of management options in BNs for decision support should be based on interdisciplinary collaborations and a range of different sources, including expert opinions, market and non-market valuations and modelling results.
- (3)
- Ecosystem-based measures have been applied less frequently in BN decision support models, but these types of measure could offer win-win solutions for both water resource management and ecosystem service delivery.
- (4)
- Bayesian networks could be configured to deliver multi-criteria decision analysis to facilitate ‘which is best?’ decision support, where cost data for particular management option types are not available.
Author Contributions
Funding
Conflicts of Interest
References
- Rivers-Moore, N.A. Exploratory use of a Bayesian network process for translating stakeholder perceptions of water quality problems in a catchment in South Africa. Water SA 2016, 42, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Noi, L.V.T.; Nitivattananon, V. Assessment of vulnerabilities to climate change for urban water and wastewater infrastructure management: Case study in Dong Nai river basin, Vietnam. Environ. Dev. 2015, 16, 119–137. [Google Scholar] [CrossRef]
- Xue, J.; Gui, D.; Lei, J.; Zeng, F.; Mao, D.; Zhang, Z. Model development of a participatory Bayesian network for coupling ecosystem services into integrated water resources management. J. Hydrol. 2017, 554, 50–65. [Google Scholar] [CrossRef]
- Noble, I.R.; Huq, S.; Anokhin, Y.A.; Carmin, J.; Goudou, D.; Lansigan, F.P.; Osman-Elasha, B.; Villamizar, A. Adaptation Needs and Options. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 833–868. [Google Scholar]
- De Bruin, K.; Goosen, H.; van Ierland, C.; Groeneveld, A. Costs and benefits of adapting spatial planning to climate change: Lessons learned from a large-scale urban development project in the Netherlands. Reg. Environ. Chang. 2014, 14, 1009–1020. [Google Scholar] [CrossRef]
- Barton, D.N.; Saloranta, T.; Moe, S.J.; Eggestad, H.O.; Kuikka, S. Bayesian belief networks as a meta-modelling tool in integrated river basin management—Pros and cons in evaluating nutrient abatement decisions under uncertainty in a Norwegian river basin. Ecol. Econ. 2008, 66, 91–104. [Google Scholar] [CrossRef]
- Death, R.G.; Death, F.; Stubbington, R.; Joy, M.K.; van den Belt, M. How good are Bayesian belief networks for environmental management? A test with data from an agricultural river catchment. Freshw. Biol. 2015, 60, 2297–2309. [Google Scholar]
- Batchelor, C.; Cain, J. Application of belief networks to water management studies. Agric. Water Manag. 1999, 40, 5157. [Google Scholar] [CrossRef]
- Jensen, F.V.; Nielsen, D.T. Bayesian Networks and Decision Graphs, 2nd ed.; Information Science and Statistics, Jordan, M., Kleinberg, J., Scholkopf, B., Eds.; Springer: New York, NY, USA, 2007. [Google Scholar]
- Aguilera, P.A.; Fernández, A.; Fernández, R.; Rumí, R.; Salmerón, A. Bayesian networks in environmental modelling. Environ. Model. Softw. 2011, 26, 1376–1388. [Google Scholar] [CrossRef]
- McDonald, K.S.; Ryder, D.S.; Tighe, M. Developing best-practice Bayesian Belief Networks in ecological risk assessments for freshwater and estuarine ecosystems: A quantitative review. J. Environ. Manag. 2015, 154, 190–200. [Google Scholar] [CrossRef]
- Sperotto, A.; Molina, J.L.; Torresan, S.; Critto, A.; Marcomini, A. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective. J. Environ. Manag. 2017, 202 Pt 1, 320–331. [Google Scholar] [CrossRef]
- Phan, T.D.; Smart, J.C.R.; Capon, S.J.; Hadwen, W.L.; Sahin, O. Applications of Bayesian belief networks in water resource management: A systematic review. Environ. Model. Softw. 2016, 85, 98–111. [Google Scholar] [CrossRef]
- Pollino, C.A.; Woodberry, O.; Nicholson, A.; Korb, K.; Hart, B.T. Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment. Environ. Model. Softw. 2007, 22, 1140–1152. [Google Scholar] [CrossRef]
- Kelly, R.A.; Jakeman, A.J.; Barreteau, O.; Borsuk, M.E.; ElSawah, S.; Hamilton, S.H.; Henriksen, H.J.; Kuikka, S.; Maier, H.R.; Rizzoli, A.E.; et al. Selecting among five common modelling approaches for integrated environmental assessment and management. Environ. Model. Softw. 2013, 47, 159–181. [Google Scholar] [CrossRef]
- Ames, D.P.; Neilson, B.T.; Stevens, D.K.; Lall, U. Using Bayesian networks to model watershed management decisions: An East Canyon Creek case study. J. Hydroinform. 2005, 7, 267–282. [Google Scholar] [CrossRef]
- Mesbah, S.M.; Kerachian, R.; Nikoo, M.R. Developing real time operating rules for trading discharge permits in rivers: Application of Bayesian Networks. Environ. Model. Softw. 2009, 24, 238–246. [Google Scholar] [CrossRef]
- Portoghese, I.; D’Agostino, D.; Giordano, R.; Scardigno, A.; Apollonio, C.; Vurro, M. An integrated modelling tool to evaluate the acceptability of irrigation constraint measures for groundwater protection. Environ. Model. Softw. 2013, 46, 90–103. [Google Scholar] [CrossRef]
- Bromley, J.; Jackson, N.A.; Clymer, O.J.; Giacomello, A.M.; Jensen, F.V. The use of Hugin® to develop Bayesian networks as an aid to integrated water resource planning. Environ. Model. Softw. 2005, 20, 231–242. [Google Scholar] [CrossRef]
- Ticehurst, J.L.; Letcher, R.A.; Rissik, D. Integration modelling and decision support: A case study of the Coastal Lake Assessment and Management (CLAM) Tool. Math. Comput. Simul. 2008, 78, 435–449. [Google Scholar] [CrossRef]
- McVittie, A.; Norton, L.; Martin-Ortega, J.; Siameti, I.; Glenk, K.; Aalders, I. Operationalizing an ecosystem services-based approach using Bayesian Belief Networks: An application to riparian buffer strips. Ecol. Econ. 2015, 110, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.A.; Adams, B.J.; McCabe, B. Methodology for Bayesian Belief Network Development to Facilitate Compliance with Water Quality Regulations. J. Infrastruct. Syst. 2010, 16, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Yi, Y.; Yang, Z.; Sun, J. Risk analysis of emergent water pollution accidents based on a Bayesian Network. J. Environ. Manag. 2016, 165, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Wang, P.; Lu, Q. Risk scenario prediction for sudden water pollution accidents based on Bayesian networks. Int. J. Syst. Assur. Eng. Manag. 2018, 9, 1165–1177. [Google Scholar] [CrossRef]
- Lee, B.; Kullman, S.W.; Yost, E.E.; Meyer, M.T.; Worley-Davis, L.; Williams, C.M.; Reckhow, K.H. Predicting characteristics of rainfall driven estrogen runoff and transport from swine AFO spray fields. Sci. Total Environ. 2015, 532, 571–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moe, S.J.; Haande, S.; Couture, R.M. Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach. Ecol. Model. 2016, 337, 330–347. [Google Scholar] [CrossRef] [Green Version]
- Sadoddin, A.; Letcher, R.A.; Jakeman, A.J.; Newham, L.T.H. A Bayesian decision network approach for assessing the ecological impacts of salinity management. Math. Comput. Simul. 2005, 69, 162–176. [Google Scholar] [CrossRef]
- Nikoo, M.R.; Kerachian, R.; Niksokhan, M.H. Equitable Waste Load Allocation in Rivers Using Fuzzy Bi-matrix Games. Water Resour. Manag. 2012, 26, 4539–4552. [Google Scholar] [CrossRef]
- Forio, M.A.E.; Landuyt, D.; Bennetsen, E.; Lock, K.; Nguyen, T.H.T.; Ambarita, M.N.D.; Musonge, P.L.S.; Boets, P.; Everaert, G.; Dominguez-Granda, L.; et al. Bayesian belief network models to analyse and predict ecological water quality in rivers. Ecol. Model. 2015, 312, 222–238. [Google Scholar] [CrossRef]
- Hines, E.E.; Landis, W.G. Regional risk assessment of the Puyallup River Watershed and the evaluation of low impact development in meeting management goals. Integr. Environ. Assess. Manag. 2014, 10, 269–278. [Google Scholar] [CrossRef]
- Said, A. The Implementation of a Bayesian Network for Watershed Management Decisions. Water Resour. Manag. 2006, 20, 591–605. [Google Scholar] [CrossRef]
- Ha, H.; Stenstrom, M.K. Identification of land use with water quality data in stormwater using a neural network. Water Res. 2003, 37, 4222–4230. [Google Scholar] [CrossRef]
- Murray, S.; Ghazali, M.; McBean, E.A. Real-Time Water Quality Monitoring: Assessment of Multisensor Data Using Bayesian Belief Networks. J. Water Resour. Plan. Manag. 2012, 138, 63–70. [Google Scholar] [CrossRef]
- Nikoo, M.R.; Kerachian, R.; Malakpour-Estalaki, S.; Bashi-Azghadi, S.N.; Azimi-Ghadikolaee, M.M. A probabilistic water quality index for river water quality assessment: A case study. Environ. Monit. Assess. 2011, 181, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Park, M.-H.; Stenstrom, M.K. Using satellite imagery for stormwater pollution management with Bayesian networks. Water Res. 2006, 40, 3429–3438. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, S.; Kang, Q.; Duan, H.; Wang, X. An integrated model for simulating and diagnosing the water quality based on the system dynamics and Bayesian network. Water Sci. Technol. 2016, 74, 2639–2655. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, R.; Zhang, L.; Zhang, Z.; Cai, Y. A Bayesian Network-based risk dynamic simulation model for accidental water pollution discharge of mine tailings ponds at watershed-scale. J. Environ. Manag. 2019, 246, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Mayfield, H.J.; Bertone, E.; Smith, C.; Sahin, O. Use of a structure aware discretisation algorithm for Bayesian networks applied to water quality predictions. Math. Comput. Simul. 2019. [Google Scholar] [CrossRef] [Green Version]
- Wijesiri, B.; Deilami, K.; Goonetilleke, A. Evaluating the relationship between temporal changes in land use and resulting water quality. Environ. Pollut. 2018, 234, 480–486. [Google Scholar] [CrossRef]
- Dyer, F.; ElSawah, S.; Croke, B.; Griffiths, R.; Harrison, E.; Lucena-Moya, P.; Jakeman, A. The effects of climate change on ecologically-relevant flow regime and water quality attributes. Stoch. Environ. Res. Risk Assess. 2014, 28, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Liyanage, C.P.; Yamada, K. Impact of population growth on the water quality of natural water bodies. Sustainability 2017, 9, 1405. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, D.B.; Reckhow, K.H. A Bayesian network assessment of macroinvertebrate responses to nutrients and other factors in streams of the Eastern Corn Belt Plains, Ohio, USA. Ecol. Model. 2017, 345, 21–29. [Google Scholar] [CrossRef]
- Nojavan, F.A.; Qian, S.S.; Paerl, H.W.; Reckhow, K.H.; Albright, E.A. A study of anthropogenic and climatic disturbance of the New River Estuary using a Bayesian belief network. Mar. Pollut. Bull. 2014, 83, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Ramin, M.; Stremilov, S.; Labencki, T.; Gudimov, A.; Boyd, D.; Arhonditsis, G.B. Integration of numerical modeling and Bayesian analysis for setting water quality criteria in Hamilton Harbour, Ontario, Canada. Environ. Model. Softw. 2011, 26, 337–353. [Google Scholar] [CrossRef]
- Keshtkar, A.R.; Salajegheh, A.; Sadoddin, A.; Allan, M.G. Application of Bayesian networks for sustainability assessment in catchment modeling and management (Case study: The Hablehrood river catchment). Ecol. Model. 2013, 268, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Lynam, T.; Drewry, J.; Higham, W.; Mitchell, C. Adaptive modelling for adaptive water quality management in the Great Barrier Reef region, Australia. Environ. Model. Softw. 2010, 25, 1291–1301. [Google Scholar] [CrossRef]
- Bertone, E.; Sahin, O.; Richards, R.; Roiko, A. Extreme events, water quality and health: A participatory Bayesian risk assessment tool for managers of reservoirs. J. Clean. Prod. 2016, 135, 657–667. [Google Scholar] [CrossRef] [Green Version]
- Dorner, S.; Shi, J.; Swayne, D. Multi-objective modelling and decision support using a Bayesian network approximation to a non-point source pollution model. Environ. Model. Softw. 2007, 22, 211–222. [Google Scholar] [CrossRef]
- Ticehurst, J.L.; Newham, L.T.H.; Rissik, D.; Letcher, R.A.; Jakeman, A.J. A Bayesian network approach for assessing the sustainability of coastal lakes in New South Wales, Australia. Environ. Model. Softw. 2007, 22, 1129–1139. [Google Scholar] [CrossRef]
- Reckhow, K.H. Water quality prediction and probability network models. Can. J. Fish. Aquat. Sci. 1999, 56, 1150. [Google Scholar] [CrossRef]
- Carpani, M.; Giupponi, C. Construction of a bayesian network for the assessment of agri-environmental measures—The case study of the venice lagoon watershed. Ital. J. Agron. 2010, 5, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Holzkaemper, A.; Kumar, V.; Surridge, B.W.J.; Paetzold, A.; Lerner, D.N. Bringing diverse knowledge sources together—A meta-model for supporting integrated catchment management. J. Environ. Manag. 2012, 96, 116–127. [Google Scholar] [CrossRef]
- Kragt, M.E.; Newham, L.T.H.; Bennett, J.; Jakeman, A.J. An integrated approach to linking economic valuation and catchment modelling. Environ. Model. Softw. 2011, 26, 92–102. [Google Scholar] [CrossRef]
- Hamilton, G.S.; Fielding, F.; Chiffings, A.W.; Hart, B.T.; Johnstone, R.W.; Mengersen, K. Investigating the use of a Bayesian Network to Model the Risk of Lyngbya majuscula Bloom Initiation in Deception Bay, Queensland, Australia. Hum. Ecol. Risk Assess. 2007, 13, 1271–1287. [Google Scholar] [CrossRef] [Green Version]
- Pike, W.A. Modeling drinking water quality violations with Bayesian networks. J. Am. Water Resour. Assoc. 2004, 40, 1563–1578. [Google Scholar] [CrossRef]
- Giordano, R.; D’Agostino, D.; Apollonio, C.; Lamaddalena, N.; Vurro, M. Bayesian Belief Network to support conflict analysis for groundwater protection: The case of the Apulia region. J. Environ. Manag. 2013, 115, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Roozbahani, A.; Ebrahimi, E.; Banihabib, M.E. A Framework for Ground Water Management Based on Bayesian Network and MCDM Techniques. Water Resour. Manag. 2018, 32, 4985–5005. [Google Scholar] [CrossRef]
- Aguilera, P.A.; Fernandez, A.; Ropero, R.F.; Molina, L. Groundwater quality assessment using data clustering based on hybrid Bayesian networks. Stoch. Environ. Res. Risk Assess. 2013, 27, 435–447. [Google Scholar] [CrossRef]
- Fienen, M.N.; Masterson, J.P.; Plant, N.G.; Gutierrez, B.T.; Thieler, E.R. Bridging groundwater models and decision support with a Bayesian network. Water Resour. Res. 2013, 49, 6459–6473. [Google Scholar] [CrossRef] [Green Version]
- Nolan, B.T.; Fienen, M.N.; Lorenz, D.L. A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA. J. Hydrol. 2015, 531, 902–911. [Google Scholar] [CrossRef] [Green Version]
- Shihab, K. Dynamic modeling of groundwater pollutants with Bayesian networks. Appl. Artif. Intell. 2008, 22, 352–376. [Google Scholar] [CrossRef]
- Moghaddam, H.K.; Moghaddam, H.K.; Kivi, Z.R.; Bahreinimotlagh, M.; Alizadeh, M.J. Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels. Groundw. Sustain. Dev. 2019, 9, 100237. [Google Scholar] [CrossRef]
- Carmona, G.; Molina, J.L.; Bromley, J.; Varela-Ortega, C.; Garcia-Arostegui, J.L. Object-Oriented Bayesian Networks for Participatory Water Management: Two Case Studies in Spain. J. Water Resour. Plan. Manag. 2011, 137, 366–376. [Google Scholar] [CrossRef]
- Carmona, G.; Varela-Ortega, C.; Bromley, J. Participatory modelling to support decision making in water management under uncertainty: Two comparative case studies in the Guadiana river basin, Spain. J. Environ. Manag. 2013, 128, 400–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henriksen, H.J.; Rasmussen, P.; Brandt, G.; von Bülow, D.; Jensen, F.V. Public participation modelling using Bayesian networks in management of groundwater contamination. Environ. Model. Softw. 2007, 22, 1101–1113. [Google Scholar] [CrossRef]
- Olalla, F.M.D.; Dominguez, A.; Ortega, F.; Artigao, A.; Fabeiro, C. Bayesian networks in planning a large aquifer in Eastern Mancha, Spain. Environ. Model. Softw. 2007, 22, 1089–1100. [Google Scholar] [CrossRef]
- Subagadis, Y.H.; Grundmann, J.; Schütze, N.; Schmitz, G.H. An integrated approach to conceptualise hydrological and socio-economic interaction for supporting management decisions of coupled groundwater–agricultural systems. Environ. Earth Sci. 2014, 72, 4917–4933. [Google Scholar] [CrossRef]
- Mohajerani, H.; Kholghi, M.; Mosaedi, A.; Farmani, R.; Sadoddin, A.; Casper, M. Application of Bayesian Decision Networks for Groundwater Resources Management Under the Conditions of High Uncertainty and Data Scarcity. Water Resour. Manag. 2017, 31, 1859–1879. [Google Scholar] [CrossRef]
- Farmani, R.; Henriksen, H.J.; Savic, D. An evolutionary Bayesian belief network methodology for optimum management of groundwater contamination. Environ. Model. Softw. 2009, 24, 303–310. [Google Scholar] [CrossRef]
- Molina, J.L.; Farmani, R.; Bromley, J. Aquifers Management through Evolutionary Bayesian Networks: The Altiplano Case Study (SE Spain). Water Resour. Manag. 2011, 25, 3883–3909. [Google Scholar] [CrossRef]
- Ghabayen, S.M.S.; McKee, M.; Kemblowski, M. Ionic and isotopic ratios for identification of salinity sources and missing data in the Gaza aquifer. J. Hydrol. 2006, 318, 360–373. [Google Scholar] [CrossRef]
- de Santa Olalla, F.J.M.; Domínguez, A.; Artigao, A.; Fabeiro, C.; Ortega, J.F. Integrated water resources management of the Hydrogeological Unit “Eastern Mancha” using Bayesian Belief Networks. Agric. Water Manag. 2005, 77, 21–36. [Google Scholar] [CrossRef]
- Henriksen, H.J.; Zorrilla-Miras, P.; de la Hera, A.; Brugnach, M. Use of Bayesian belief networks for dealing with ambiguity in integrated groundwater management. Integr. Environ. Assess. Manag. 2012, 8, 430–444. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Santos, P.; Henriksen, H.J.; Zorrilla, R.; Martinez-Alfaro, P.E. Comparative reflections on the use of modelling tools in conflictive water management settings: The Mancha Occidental aquifer, Spain. Environ. Model. Softw. 2010, 25, 1439–1449. [Google Scholar] [CrossRef]
- Chan, T.; Ross, H.; Hoverman, S.; Powell, B. Participatory development of a Bayesian network model for catchment-based water resource management. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Pang, A.P.; Sun, T. Bayesian networks for environmental flow decision-making and an application in the Yellow River estuary, China. Hydrol. Earth Syst. Sci. 2014, 18, 1641–1651. [Google Scholar] [CrossRef] [Green Version]
- Avilés, A.; Célleri, R.; Solera, A.; Paredes, J. Probabilistic forecasting of drought events using Markov chain- and Bayesian network-based models: A case study of an Andean regulated river basin. Water 2016, 8, 37. [Google Scholar] [CrossRef]
- Ahmadi, A.; Karamouz, M.; Moridi, A. Robust Methods for Identifying Optimal Reservoir Operation Strategies Using Deterministic and Stochastic Formulations. Water Resour. Manag. 2010, 24, 2527–2552. [Google Scholar] [CrossRef]
- Bullene, R.E.; Brooks, J.P.; Boone, E.L.; Lipchin, C.; Sorrell, T.P.; Stewart, C.R. Uncertainty Quantification for a Middle East Water Supply System. J. Water Resour. Plan. Manag. 2013, 139, 223–234. [Google Scholar] [CrossRef]
- Ghabayen, S.; McKee, M.; Kemblowski, M. Characterization of uncertainties in the operation and economics of the proposed seawater desalination plant in the Gaza Strip. Desalination 2004, 161, 191–201. [Google Scholar] [CrossRef]
- Francis, R.A.; Guikema, S.D.; Henneman, L. Bayesian Belief Networks for predicting drinking water distribution system pipe breaks. Reliab. Eng. Syst. Saf. 2014, 130, 1–11. [Google Scholar] [CrossRef]
- Hunter, P.R.; de Sylor, M.A.; Risebro, H.L.; Nichols, G.L.; Kay, D.; Hartemann, P. Quantitative microbial risk assessment of cryptosporidiosis and giardiasis from very small private water supplies. Risk Anal. 2011, 31, 228–236. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, L.; Yin, J.; Wang, H. Study of impact factors of willingness to pay regarding water reserve of South-to-North Water Diversion Project in Beijing based on Bayesian network model. J. Clean. Prod. 2018, 184, 569–578. [Google Scholar] [CrossRef]
- Cronk, R.; Bartram, J. Identifying opportunities to improve piped water continuity and water system monitoring in Honduras, Nicaragua, and Panama: Evidence from Bayesian networks and regression analysis. J. Clean. Prod. 2018, 196, 1–10. [Google Scholar] [CrossRef]
- Dondeynaz, C.; Puga, J.L.; Moreno, C.C. Bayesian networks modelling in support to cross-cutting analysis of water supply and sanitation in developing countries. Hydrol. Earth Syst. Sci. 2013, 17, 3397–3419. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.B.; Shields, K.F.; Chan, T.U.; Christenson, E.; Cronk, R.D.; Leker, H.; Samani, D.; Apoya, P.; Lutz, A.; Bartram, J. Understanding handpump sustainability: Determinants of rural water source functionality in the Greater Afram Plains region of Ghana. Water Resour. Res. 2015, 51, 8431–8449. [Google Scholar] [CrossRef] [PubMed]
- Pagano, A.; Giordano, R.; Portoghese, I.; Fratino, U.; Vurro, M. A Bayesian vulnerability assessment tool for drinking water mains under extreme events. Nat. Hazards 2014, 74, 2193–2227. [Google Scholar] [CrossRef]
- Moglia, M.; Perez, P.; Burn, S. Assessing the likelihood of realizing idealized goals: The case of urban water strategies. Environ. Model. Softw. 2012, 35, 50–60. [Google Scholar] [CrossRef]
- Moglia, M.; Sharma, A.K.; Maheepala, S. Multi-criteria decision assessments using Subjective Logic: Methodology and the case of urban water strategies. J. Hydrol. 2012, 452–453, 180–189. [Google Scholar] [CrossRef]
- Kabir, G.; Tesfamariam, S.; Francisque, A.; Sadiq, R. Evaluating risk of water mains failure using a Bayesian belief network model. Eur. J. Oper. Res. 2015, 240, 220–234. [Google Scholar] [CrossRef]
- Leu, S.-S.; Bui, Q.-N. Leak Prediction Model for Water Distribution Networks Created Using a Bayesian Network Learning Approach. Water Resour. Manag. 2016, 30, 2719–2733. [Google Scholar] [CrossRef]
- Liedloff, A.C.; Woodward, E.L.; Harrington, G.A.; Jackson, S. Integrating indigenous ecological and scientific hydro-geological knowledge using a Bayesian Network in the context of water resource development. J. Hydrol. 2013, 499, 177–187. [Google Scholar] [CrossRef]
- Barron, J.; Kemp-Benedict, E.; Morris, J.; de Bruin, A.; Wang, G.; Fencl, A. Mapping the potential success of agricultural water management interventions for smallholders: Where are the best opportunities? Water Resour. Rural Dev. 2015, 6, 24–49. [Google Scholar] [CrossRef]
- Cain, J.D.; Jinapala, K.; Makin, I.W.; Somaratna, P.G.; Ariyaratna, B.R.; Perera, L.R. Participatory decision support for agricultural management. A case study from Sri Lanka. Agric. Syst. 2003, 76, 457–482. [Google Scholar]
- Maleksaeidi, H.; Ranjbar, S.; Eskandari, F.; Jalali, M.; Keshavarz, M. Vegetable farmers’ knowledge, attitude and drivers regarding untreated wastewater irrigation in developing countries: A case study in Iran. J. Clean. Prod. 2018, 202, 863–870. [Google Scholar] [CrossRef]
- Andriyas, S.; McKee, M. Development of a Bayesian Belief Network Model Framework for Analyzing Farmers’ Irrigation Behavior. J. Agric. Sci. 2015, 7, 1. [Google Scholar] [CrossRef]
- Robertson, D.; Wang, Q.J. Bayesian networks for decision analyses: An application to irrigation system selection. Aust. J. Exp. Agric. 2004, 44, 145–150. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hagare, D.; Maheshwari, B. Framework to assess sources controlling soil salinity resulting from irrigation using recycled water: An application of Bayesian Belief Network. J. Clean. Prod. 2014, 105, 406–419. [Google Scholar] [CrossRef]
- Sherafatpour, Z.; Roozbahani, A.; Hasani, Y. Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches. Water Resour. Manag. 2019, 33, 2277–2299. [Google Scholar] [CrossRef]
- Quinn, J.M.; Monaghan, R.M.; Bidwell, V.J.; Harris, S.R. A Bayesian Belief Network approach to evaluating complex effects of irrigation-driven agricultural intensification scenarios on future aquatic environmental and economic values in a New Zealand catchment. Mar. Freshw. Res. 2013, 64, 460–474. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Xia, J.; Chen, J. Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: A case study of the Chaobai River basin in northern China. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Mamitimin, Y.; Feike, T.; Doluschitz, R. Bayesian network modeling to improve water pricing practices in northwest China. Water 2015, 7, 5617–5637. [Google Scholar] [CrossRef] [Green Version]
- Castelletti, A.; Soncini-Sessa, R. Bayesian Networks and participatory modelling in water resource management. Environ. Model. Softw. 2007, 22, 1075–1088. [Google Scholar] [CrossRef]
- Saravanan, V.S. Negotiating participatory irrigation management in the Indian Himalayas. Agric. Water Manag. 2010, 97, 651–658. [Google Scholar] [CrossRef]
- Johns, A.F.; Graham, S.E.; Harris, M.J.; Markiewicz, A.J.; Stinson, J.M.; Landis, W.G. Using the Bayesian network relative risk model risk assessment process to evaluate management alternatives for the South River and upper Shenandoah River, Virginia. Integr. Environ. Assess. Manag. 2017, 13, 100–114. [Google Scholar] [CrossRef]
- Stewart-Koster, B.; Bunn, S.E.; MacKay, S.J.; Poff, N.L.; Naiman, R.J.; Lake, P.S. The use of Bayesian networks to guide investments in flow and catchment restoration for impaired river ecosystems. Freshw. Biol. 2010, 55, 243–260. [Google Scholar] [CrossRef]
- Hjerppe, T.; Taskinen, A.; Kotamäki, N.; Malve, O.; Kettunen, J. Probabilistic Evaluation of Ecological and Economic Objectives of River Basin Management Reveals a Potential Flaw in the Goal Setting of the EU Water Framework Directive. Environ. Manag. 2017, 59, 584–593. [Google Scholar] [CrossRef]
- Leigh, C.; Stewart-Koster, B.; Sheldon, F.; Burford, M.A. Understanding multiple ecological responses to anthropogenic disturbance: Rivers and potential flow regime change. Ecol. Appl. 2012, 22, 250–263. [Google Scholar] [CrossRef] [Green Version]
- Shenton, W.; Hart, B.T.; Chan, T.U. A Bayesian network approach to support environmental flow restoration decisions in the Yarra River, Australia. Stoch. Environ. Res. Risk Assess. 2014, 28, 57–65. [Google Scholar] [CrossRef]
- Allan, J.D.; Yuan, L.L.; Black, P.; Stockton, T.; Davies, P.E.; Magierowski, R.H.; Read, S.M. Investigating the relationships between environmental stressors and stream condition using Bayesian belief networks. Freshw. Biol. 2012, 57 (Suppl. 1), 58–73. [Google Scholar] [CrossRef] [Green Version]
- Morrison, R.R.; Stone, M.C. Spatially implemented Bayesian network model to assess environmental impacts of water management. Water Resour. Res. 2014, 50, 8107–8124. [Google Scholar] [CrossRef]
- Calder, I.; Gosain, A.; Rao, M.S.R.M.; Batchelor, C.; Garratt, J.; Bishop, E. Watershed development in India. 2. New approaches for managing externalities and meeting sustainability requirements. Environ. Dev. Sustain. 2007, 10, 427–440. [Google Scholar]
- Borsuk, M.E.; Schweizer, S.; Reichert, P. A Bayesian network model for integrative river rehabilitation planning and management. Integr. Environ. Assess. Manag. 2012, 8, 462–472. [Google Scholar] [CrossRef]
- Ropero, R.F.; Rumí, R.; Aguilera, P.A. Modelling relationships between socioeconomy, landscape and water flows in Mediterranean agroecosystems: A case study in Adra catchment (Spain) using Bayesian networks. Environ. Ecol. Stat. 2019, 26, 47–86. [Google Scholar] [CrossRef]
- Chan, T.U.; Hart, B.T.; Kennard, M.J.; Pusey, B.J.; Shenton, W.; Douglas, M.M.; Valentine, E.; Patel, S. Bayesian network models for environmental flow decision making in the Daly River, Northern Territory, Australia. River Res. Appl. 2012, 28, 283–301. [Google Scholar] [CrossRef]
- Varis, O.; Rahaman, M.M.; Kajander, T. Fully connected Bayesian belief networks: A modeling procedure with a case study of the Ganges river basin. Integr. Environ. Assess. Manag. 2012, 8, 491–502. [Google Scholar] [CrossRef]
- Tattari, S.; Schultz, T.; Kuussaari, M. Use of belief network modelling to assess the impact of buffer zones on water protection and biodiversity. Agric. Ecosyst. Environ. 2003, 96, 119–132. [Google Scholar] [CrossRef]
- Alameddine, I.; Cha, Y.; Reckhow, K.H. An evaluation of automated structure learning with Bayesian networks: An application to estuarine chlorophyll dynamics. Environ. Model. Softw. 2011, 26, 163–172. [Google Scholar] [CrossRef]
- Couture, R.-M.; Moe, S.J.; Lin, Y.; Kaste, Ø.; Haande, S.; Lyche Solheim, A. Simulating water quality and ecological status of Lake Vansjø, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network. Sci. Total Environ. 2018, 621, 713–724. [Google Scholar] [CrossRef]
- Qian, S.S.; Miltner, R.J. A continuous variable Bayesian networks model for water quality modeling: A case study of setting nitrogen criterion for small rivers and streams in Ohio, USA. Environ. Model. Softw. 2015, 69, 14–22. [Google Scholar] [CrossRef]
- Wijesiri, B.; Liu, A.; Deilami, K.; He, B.; Hong, N.; Yang, B.; Zhao, X.; Ayoko, G.; Goonetilleke, A. Nutrients and metals interactions between water and sediment phases: An urban river case study. Environ. Pollut. 2019, 251, 354–362. [Google Scholar] [CrossRef]
- Borsuk, M.E.; Stow, C.A.; Reckhow, K.H. Integrated approach to total maximum daily load development for Neuse River Estuary using Bayesian probability network model (Neu-BERN). J. Water Resour. Plan. Manag. 2003, 129, 271–282. [Google Scholar] [CrossRef]
- Borsuk, M.E.; Stow, C.A.; Reckhow, K.H. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecol. Model. 2004, 173, 219–239. [Google Scholar] [CrossRef]
- Nash, D.; Hannah, M. Using Monte-Carlo simulations and Bayesian Networks to quantify and demonstrate the impact of fertiliser best management practices. Environ. Model. Softw. 2011, 26, 1079–1088. [Google Scholar] [CrossRef]
- McDowell, R.W.; Nash, D.; George, A.; Wang, Q.J.; Duncan, R. Approaches for quantifying and managing diffuse phosphorus exports at the farm/small catchment scale. J. Environ. Qual. 2009, 38, 1968–1980. [Google Scholar] [CrossRef]
- Sperotto, A.; Molina, J.L.; Torresan, S.; Critto, A.; Pulido-Velazquez, M.; Marcomini, A. A Bayesian Networks approach for the assessment of climate change impacts on nutrients loading. Environ. Sci. Policy 2019, 100, 21–36. [Google Scholar] [CrossRef]
- Sušnik, J.; Molina, J.L.; Vamvakeridou-Lyroudia, L.S.; Savić, D.A.; Kapelan, Z. Comparative Analysis of System Dynamics and Object-Oriented Bayesian Networks Modelling for Water Systems Management. Water Resour. Manag. 2013, 27, 819–841. [Google Scholar] [CrossRef]
- Asadilour, M.; Kaveh, F.; Manshuri, M.; Khosrojerdi, A. Developing decision support tools for optimum domestic management by bayesian belief networks in tehran, Iran. Adv. Environ. Biol. 2012, 6, 286–296. [Google Scholar]
- Geraldi, M.S.; Ghisi, E. Short-term instead of long-term rainfall time series in rainwater harvesting simulation in houses: An assessment using Bayesian Network. Resour. Conserv. Recycl. 2019, 144, 1–12. [Google Scholar] [CrossRef]
- Molina, J.L.; Bromley, J.; García-Aróstegui, J.L.; Sullivan, C.; Benavente, J. Integrated water resources management of overexploited hydrogeological systems using Object-Oriented Bayesian Networks. Environ. Model. Softw. 2010, 25, 383–397. [Google Scholar] [CrossRef] [Green Version]
- Said, A.; Stevens, D.K.; Sehlke, G. Physical and Economic Sustainability of Water: New Approach Using the Case of the Big Lost River, Idaho. Environ. Dev. Sustain. 2005, 7, 453–464. [Google Scholar] [CrossRef]
- Varis, O.; Kuikka, S. BENE-EIA: A Bayesian approach to expert judgment elicitation with case studies on climate change impacts on surface waters. Clim. Chang. 1997, 37, 539–563. [Google Scholar] [CrossRef]
- Mediero, L.; Garrote, L.; Martín-Carrasco, F. A probabilistic model to support reservoir operation decisions during flash floods. Hydrol. Sci. J. 2010, 52, 523–537. [Google Scholar] [CrossRef] [Green Version]
- Malekmohammadi, B.; Kerachian, R.; Zahraie, B. Developing monthly operating rules for a cascade system of reservoirs: Application of Bayesian Networks. Environ. Model. Softw. 2009, 24, 1420–1432. [Google Scholar] [CrossRef]
- Ropero, R.F.; Flores, M.J.; Rumí, R.; Aguilera, P.A. Applications of hybrid dynamic Bayesian networks to water reservoir management. Environmetrics 2017, 28, e2432. [Google Scholar] [CrossRef]
- Kim, K.; Lee, S.; Jin, Y.; Kwanghoon, K.; Youngkyu, J.; Sangho, L. Forecasting Quarterly Inflow to Reservoirs Combining a Copula-Based Bayesian Network Method with Drought Forecasting. Water 2018, 10, 233. [Google Scholar]
- Landuyt, D.; Lemmens, P.; D’Hondt, R.; Broekx, S.; Liekens, I.; De Bie, T.; Declerck, S.A.J.; De Meester, L.; Goethals, P.L.M. An ecosystem service approach to support integrated pond management: A case study using Bayesian belief networks—Highlighting opportunities and risks. J. Environ. Manag. 2014, 145, 79–87. [Google Scholar] [CrossRef]
- Chen, J.; Zhong, P.-A.; An, R.; Zhu, F.; Xu, B. Risk analysis for real-time flood control operation of a multi-reservoir system using a dynamic Bayesian network. Environ. Model. Softw. 2019, 111, 409–420. [Google Scholar] [CrossRef]
- Cheon, S.P.; Kim, S.; Kim, J.; Kim, C. Learning Bayesian networks based diagnosis system for wastewater treatment process with sensor data. Water Sci. Technol. 2008, 58, 2381–2393. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Yang, H.Z.; Liang, X.F. Prediction analysis of a wastewater treatment system using a Bayesian network. Environ. Model. Softw. 2013, 40, 140–150. [Google Scholar] [CrossRef]
- Inman, D.; Blind, M.; Ribarova, I.; Krause, A.; Roosenschoon, O.; Kassahun, A.; Scholten, H.; Arampatzis, G.; Abrami, G.; McIntosh, B.; et al. Perceived effectiveness of environmental decision support systems in participatory planning: Evidence from small groups of end-users. Environ. Model. Softw. 2011, 26, 302–309. [Google Scholar] [CrossRef]
- Bertone, E.; Sahin, O.; Stewart, R.A.; Zou, P.X.W.; Alam, M.; Hampson, K.; Blair, E. Role of financial mechanisms for accelerating the rate of water and energy efficiency retrofits in Australian public buildings: Hybrid Bayesian Network and System Dynamics modelling approach. Appl. Energy 2018, 210, 409–419. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.H.; Pollino, C.A. Good practice in Bayesian network modelling. Environ. Model. Softw. 2012, 37, 134–145. [Google Scholar] [CrossRef]
- Fenton, N.; Neil, M. Making decisions: Using Bayesian nets and MCDA. Knowl. Based Syst. 2001, 14, 307–325. [Google Scholar] [CrossRef] [Green Version]
- Khakzad, N.; Reniers, G. Application of Bayesian network and multi-criteria decision analysis to risk-based design of chemical plants. Chem. Eng. Trans. 2016, 48, 223–228. [Google Scholar]
- Renooij, S. Probability elicitation for belief networks: Issues to consider. Knowl. Eng. Rev. 2001, 16, 255–269. [Google Scholar] [CrossRef]
Research Aims | Data Usage | Management Measures | Decision Making | Reviewed Studies |
---|---|---|---|---|
Water quality management | QL | EM | SC, OP | McVittie et al. [21] |
NO | SC | Joseph et al. [22] | ||
PR | Tang et al. [23], Cheng et al. [24] | |||
QT | EM | SC | Lee et al. [25], Moe et al. [26] | |
SC, OP | Sadoddin et al. [27] | |||
ISM | OP | Mesbah et al. [17] | ||
SC | Nikoo et al. [28] | |||
ISM, TEM, EM | SC | Forio et al. [29] | ||
TEM | SC | Hines and Landis [30] | ||
TEM, EM | SC, Op | Said [31] | ||
NO | PR | Ha and Stenstrom [32], Murray et al. [33], Nikoo et al. [34], Park and Stenstrom [35], Wang et al. [36], Liu et al. [37], Mayfield et al. [38], Wijesiri et al. [39] | ||
SC | Dyer et al. [40], Liyanage and Yamada [41], McLaughlin and Reckhow [42], Nojavan et al. [43], Ramin et al. [44] | |||
Both | EM | SC, OP | Keshtkar et al. [45] | |
SC | Lynam et al. [46] | |||
ISM | SC | Bertone et al. [47] | ||
ISM, EM | SC | Dorner et al. [48], Ticehurst et al. [49] | ||
SC, OP | Rivers-Moore [1] | |||
ISM, TEM | SC | Reckhow [50] | ||
ISM, TEM, EM | SC | Carpani and Giupponi [51], Holzkaemper et al. [52] | ||
TEM, EM | SC, OP | Kragt et al. [53] | ||
NO | SC | Hamilton et al. [54] | ||
PR | Pollino et al. [14], Pike [55] | |||
Groundwater management | QL | ISM, TEM | SC | Giordano et al. [56], Roozbahani et al. [57] |
QT | TEM | SC | Aguilera et al. [58] | |
NO | PR | Fienen et al. [59], Nolan et al. [60], Shihab [61], Moghaddam et al. [62] | ||
Both | ISM | SC | Carmona et al. [63], Carmona et al. [64], Henriksen et al. [65], Olalla et al. [66], Subagadis et al. [67] | |
ISM, EM | SC | Mohajerani et al. [68] | ||
ISM, TEM | OP | Farmani et al. [69] | ||
SC, OP | Molina et al. [70] | |||
NO | PR | Ghabayen et al. [71], Martín de Santa Olalla et al. [72] | ||
SC | Henriksen et al. [73], Martinez-Santos et al. [74] | |||
Water supply management | QL | TEM | SC | Chan et al. [75] |
QT | ISM | SC | Pang and Sun [76], Avilés et al. [77] | |
TEM | OP | Ahmadi et al. [78], Bullene et al. [79], Ghabayen et al. [80] | ||
NO | PR | Francis et al. [81], Hunter et al. [82], Peng et al. [83] | ||
SC | [84] | |||
Both | ISM | SC | Dondeynaz et al. [85], Fisher et al. [86] | |
TEM | SC | Pagano et al. [87], Moglia et al. [88] | ||
SC, OP | Moglia et al. [89] | |||
ISM, TEM, EM | SC | Noi and Nitivattananon [2] | ||
NO | SC | Kabir et al. [90] | ||
PR | Leu and Bui [91], Liedloff et al. [92] | |||
Irrigation management | QL | TEM | SC | Barron et al. [93] |
ISM, TEM, EM | SC | Cain et al. [94] | ||
NO | PR | Maleksaeidi et al. [95] | ||
QT | ISM | SC | Andriyas and McKee [96] | |
TEM, EM | SC | Robertson and Wang [97] | ||
NO | SC | Rahman et al. [98], Sherafatpour et al. [99] | ||
Both | ISM | SC | Quinn et al. [100], Wang et al. [101] | |
ISM, TEM | SC | Mamitimin et al. [102] | ||
TEM | OP | Batchelor and Cain [8] | ||
NO | PR | Castelletti and Soncini-Sessa [103], Saravanan [104] | ||
River related management | QT | EM | SC | Johns et al. [105] |
SC, OP | Stewart-Koster et al. [106] | |||
ISM, TEM, EM | SC, OP | Hjerppe et al. [107] | ||
NO | SC | Leigh et al. [108], Shenton et al. [109] | ||
Both | EM | SC | Allan et al. [110], Morrison and Stone [111] | |
TEM | SC | Calder et al. [112] | ||
TEM, EM | SC, OP | Borsuk et al. [113] | ||
ISM, EM | SC | Ropero et al. [114] | ||
NO | PR | Chan et al. [115] | ||
SC | Varis et al. [116] | |||
Nutrient management | QL | NO | PR | Tattari et al. [117] |
QT | ISM | SC | Alameddine et al. [118], Couture et al. [119] | |
TEM | SC, OP | Ames et al. [16] | ||
TEM, EM | SC | Death et al. [7] | ||
NO | PR | Qian and Miltner [120], Wijesiri et al. [121] | ||
Both | ISM | SC | Borsuk et al. [122], Borsuk et al. [123], Nash and Hannah [124] | |
ISM, TEM, EM | SC, OP | Barton et al. [6] | ||
NO | SC | McDowell et al. [125], Sperotto et al. [126] | ||
Water supply and demand management | QT | ISM | SC, OP | Portoghese et al. [18] |
SC | Sušnik et al. [127] | |||
ISM, TEM | SC | Asadilour et al. [128] | ||
NO | PR | Geraldi and Ghisi [129] | ||
Both | ISM | SC, OP | Molina et al. [130] | |
ISM, TEM, EM | SC | Xue et al. [3] | ||
ISM, TEM | SC | Bromley et al. [19] | ||
NO | SC | Said et al. [131], Varis and Kuikka [132] | ||
Reservoir management | QT | ISM | SC | Mediero et al. [133] |
TEM | SC | Malekmohammadi et al. [134] | ||
NO | SC | Ropero et al. [135] | ||
PR | Kim et al. [136] | |||
Both | ISM | SC, OP | Landuyt et al. [137] | |
NO | PR | Chen et al. [138] | ||
Wastewater treatment management | Both | NO | PR | Cheon et al. [139], Li et al. [140] |
Water demand management | Both | NO | PR | Inman et al. [141] |
Water and energy management | Both | ISM, TEM | SC, OP | Bertone et al. [142] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, T.D.; Smart, J.C.R.; Stewart-Koster, B.; Sahin, O.; Hadwen, W.L.; Dinh, L.T.; Tahmasbian, I.; Capon, S.J. Applications of Bayesian Networks as Decision Support Tools for Water Resource Management under Climate Change and Socio-Economic Stressors: A Critical Appraisal. Water 2019, 11, 2642. https://doi.org/10.3390/w11122642
Phan TD, Smart JCR, Stewart-Koster B, Sahin O, Hadwen WL, Dinh LT, Tahmasbian I, Capon SJ. Applications of Bayesian Networks as Decision Support Tools for Water Resource Management under Climate Change and Socio-Economic Stressors: A Critical Appraisal. Water. 2019; 11(12):2642. https://doi.org/10.3390/w11122642
Chicago/Turabian StylePhan, Thuc D., James C. R. Smart, Ben Stewart-Koster, Oz. Sahin, Wade L. Hadwen, Lien T. Dinh, Iman Tahmasbian, and Samantha J. Capon. 2019. "Applications of Bayesian Networks as Decision Support Tools for Water Resource Management under Climate Change and Socio-Economic Stressors: A Critical Appraisal" Water 11, no. 12: 2642. https://doi.org/10.3390/w11122642
APA StylePhan, T. D., Smart, J. C. R., Stewart-Koster, B., Sahin, O., Hadwen, W. L., Dinh, L. T., Tahmasbian, I., & Capon, S. J. (2019). Applications of Bayesian Networks as Decision Support Tools for Water Resource Management under Climate Change and Socio-Economic Stressors: A Critical Appraisal. Water, 11(12), 2642. https://doi.org/10.3390/w11122642