Scale up of Microbial Fuel Cell Stack System for Residential Wastewater Treatment in Continuous Mode Operation
Abstract
:1. Introduction
2. Materials and Methods
2.1. AQUOX®-Microbial Fuel Cell Stack System (MFCSS)
2.2. Energy-Harvesting System (EHS)
2.3. Analytical Techniques
3. Results
3.1. AQUOX®-MFCSS
3.2. EHS Behavior
4. Discussion
4.1. Scaling up a Microbial Fuel Cell (MFC) System
4.2. Treatment Performance in AQUOX®-MFCSS
4.3. EHS Performance
4.4. Economic Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cortés, F.I.A.; Pérez, M.L.; Mogollón, H.M. Mexico’s water challenges for the 21st century. In Water Resources in Mexico; Springer: New York, NY, USA, 2012; pp. 21–38. [Google Scholar]
- Alzate-Gaviria, L.; García-Rodríguez, O.; Flota-Bañuelos, M.; Del Rio Jorge-Rivera, F.; Cámara-Chalé, G.; Domínguez-Maldonado, J. Stacked-MFC into a typical septic tank used in public housing. Biofuels 2016, 7, 79–86. [Google Scholar] [CrossRef]
- Potter, M.C. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. Lond. B 1911, 84, 260–276. [Google Scholar] [CrossRef]
- Cohen, B.J. The bacterial culture as an electrical half-cell. J. Bacteriol. 1931, 21, 18–19. [Google Scholar]
- Karube, I.; Matsunaga, T.; Mitsuda, S.; Suzuki, S. Microbial electrode BOD sensors. Biotechnology and bioengineering. Biotechnol. Bioeng. 1977, 19, 1535–1547. [Google Scholar] [CrossRef] [PubMed]
- Bennetto, P. Microbes come to power. New Sci. 1987, 114, 36–39. [Google Scholar]
- Santoro, C.; Flores-Cadengo, C.; Soavi, F.; Kodali, M.; Merino-Jimenez, I.; Gajda, I.; Greenman, J.; Ieropoulos, I.; Atanassov, P. Ceramic Microbial Fuel Cells Stack: Power generation in standard and supercapacitive mode. Sci. Rep. 2018, 8, 3281. [Google Scholar] [CrossRef] [PubMed]
- Walter, X.A.; Merino-Jiménez, I.; Greenman, J.; Ieropoulos, I. PEE POWER® urinal II–Urinal scale-up with microbial fuel cell scale-down for improved lighting. J. Power Sources 2018, 392, 150–158. [Google Scholar] [CrossRef]
- Janicek, A.; Fan, Y.; Liu, H. Design of microbial fuel cells for practical application: A review and analysis of scale-up studies. Biofuels 2014, 5, 79–92. [Google Scholar] [CrossRef]
- Dong, Y.; Qu, Y.; He, W.; Du, Y.; Liu, J.; Han, X.; Feng, Y. A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresour. Technol. 2015, 195, 66–72. [Google Scholar] [CrossRef]
- Liang, P.; Duan, R.; Jiang, Y.; Zhang, X.; Qiu, Y.; Huang, X. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Res. 2018, 141, 1–8. [Google Scholar] [CrossRef]
- Vilajeliu-Pons, A.; Puig, S.; Salcedo-Dávila, I.; Balaguer, M.; Colprim, J. Long-term assessment of six-stacked scaled-up MFCs treating swine manure with different electrode materials. Environ. Sci. Water Res. Technol. 2017, 3, 947–959. [Google Scholar] [CrossRef]
- Ge, Z.; He, Z. Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: Treatment, energy, and cost. Environ. Sci. Water Res. Technol. 2016, 2, 274–281. [Google Scholar] [CrossRef]
- Ge, Z.; Wu, L.; Zhang, F.; He, Z. Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater. J. Power Sources 2015, 297, 260–264. [Google Scholar] [CrossRef]
- Logan, B.E.; Wallack, M.J.; Kim, K.-Y.; He, W.; Feng, Y.; Saikaly, P.E. Assessment of microbial fuel cell configurations and power densities. Environ. Sci. Technol. Lett. 2015, 2, 206–214. [Google Scholar] [CrossRef]
- Sonawane, J.M.; Yadav, A.; Ghosh, P.C.; Adeloju, S.B. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens. Bioelectron. 2017, 90, 558–576. [Google Scholar] [CrossRef]
- Logan, B.E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Semarnat. Norma Oficial Mexicana NOM-001-SEMARNAT-1996. Que establece los Límites Máximos Permisibles de Contaminantes en las Descargas de Aguas Residuales en Aguas y Bienes Nacionales; Diario Oficial de la Federación: Mexico City, Mexico, 1996.
- Prakash, G.S.; Viva, F.A.; Bretschger, O.; Yang, B.; El-Naggar, M.; Nealson, K. Inoculation procedures and characterization of membrane electrode assemblies for microbial fuel cells. J. Power Sources 2010, 195, 111–117. [Google Scholar] [CrossRef]
- Ford, T.D. Wearable Power Supply Comprising a Master Cell and a Slave Cell. U.S. Patents 9413181B2, 9 August 2016. [Google Scholar]
- Méndez Novelo, R.; Gijón Yescas, A.; Quintal Franco, C.; Osorio Rodríguez, H. Determinación de la tasa de acumulación de lodos en fosas sépticas de la ciudad de Mérida, Yucatán. Ingeniería 2007, 11, 55–64. [Google Scholar]
- Deeke, A.; Sleutels, T.H.; Donkers, T.F.; Hamelers, H.V.; Buisman, C.J.; Ter Heijne, A. Fluidized capacitive bioanode as a novel reactor concept for the microbial fuel cell. Environ. Sci. Technol. 2015, 49, 1929–1935. [Google Scholar] [CrossRef]
- He, L.; Du, P.; Chen, Y.; Lu, H.; Cheng, X.; Chang, B.; Wang, Z. Advances in microbial fuel cells for wastewater treatment. Renew. Sustain. Energy Rev. 2017, 71, 388–403. [Google Scholar] [CrossRef]
- Pham, T.; Rabaey, K.; Aelterman, P.; Clauwaert, P.; De Schamphelaire, L.; Boon, N.; Verstraete, W. Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng. Life Sci. 2006, 6, 285–292. [Google Scholar] [CrossRef]
- Sadhukhan, J.; Lloyd, J.R.; Scott, K.; Premier, G.C.; Eileen, H.Y.; Curtis, T.; Head, I.M. A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2. Renew. Sustain. Energy Rev. 2016, 56, 116–132. [Google Scholar] [CrossRef]
- Oh, S.T.; Kim, J.R.; Premier, G.C.; Lee, T.H.; Kim, C.; Sloan, W.T. Sustainable wastewater treatment: How might microbial fuel cells contribute. Biotechnol. Adv. 2010, 28, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Howe, K.J.; Crittenden, J.C.; Hand, D.W.; Trussell, R.R.; Tchobanoglous, G. Principles of Water Treatment; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; DeMarini, D.M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res./Rev. Mutat. Res. 2007, 636, 178–242. [Google Scholar] [CrossRef]
- Matamoros, V.; Mujeriego, R.; Bayona, J.M. Trihalomethane occurrence in chlorinated reclaimed water at full-scale wastewater treatment plants in NE Spain. Water Res. 2007, 41, 3337–3344. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-X.; Wu, Q.-Y.; Hu, H.-Y.; Tian, J. Effect of ammonia on the formation of THMs and HAAs in secondary effluent chlorination. Chemosphere 2009, 76, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Liang, P.; Chen, Y.; Xia, X.; Huang, X. Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system. Bioresour. Technol. 2011, 102, 348–354. [Google Scholar] [CrossRef]
- Zhang, F.; He, Z. Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell. Process Biochem. 2012, 47, 2146–2151. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, F.; Chen, L.; Zhao, Q.; Tao, G. Removal of ammonia nitrogen from wastewater using an aerobic cathode microbial fuel cell. Bioresour. Technol. 2013, 146, 161–168. [Google Scholar] [CrossRef]
- Rozendal, R.; Sleutels, T.; Hamelers, H.; Buisman, C. Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater. Water Sci. Technol. 2008, 57, 1757–1762. [Google Scholar] [CrossRef]
- Sleutels, T.H.; Hamelers, H.V.; Rozendal, R.A.; Buisman, C.J. Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Int. J. Hydrogen Energy 2009, 34, 3612–3620. [Google Scholar] [CrossRef]
- Jiang, D.; Curtis, M.; Troop, E.; Scheible, K.; McGrath, J.; Hu, B.; Suib, S.; Raymond, D.; Li, B. A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. Int. J. Hydrogen Energy 2011, 36, 876–884. [Google Scholar] [CrossRef]
- Tian, Y.; Mei, X.; Liang, Q.; Wu, D.; Ren, N.; Xing, D. Biological degradation of potato pulp waste and microbial community structure in microbial fuel cells. RSC Adv. 2017, 7, 8376–8380. [Google Scholar] [CrossRef]
- Zhang, F.; Ge, Z.; Grimaud, J.; Hurst, J.; He, Z. Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environ. Sci. Technol. 2013, 47, 4941–4948. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Park, J.-D.; Ren, Z.J. Practical energy harvesting for microbial fuel cells: A review. Environ. Sci. Technol. 2015, 49, 3267–3277. [Google Scholar] [CrossRef] [PubMed]
- Dewan, A.; Beyenal, H.; Lewandowski, Z. Intermittent energy harvesting improves the performance of microbial fuel cells. Environ. Sci. Technol. 2009, 43, 4600–4605. [Google Scholar] [CrossRef]
- Do, M.; Ngo, H.; Guo, W.; Liu, Y.; Chang, S.; Nguyen, D.; Nghiem, L.; Ni, B. Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. Sci. Total Environ. 2018, 639, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.; Mohamed, A.; Ha, P.T.; Bloom, J.; Ewing, T.; Arias-Thode, M.; Chadwick, B.; Beyenal, H. The influence of energy harvesting strategies on performance and microbial community for sediment microbial fuel cells. J. Electrochem. Soc. 2017, 164, H3109–H3114. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Wen, Q. Microbial fuel cells: Enhancement with a polyaniline/carbon felt capacitive bioanode and reduction of Cr (VI) using the intermittent operation. Environ. Chem. Lett. 2018, 16, 319–326. [Google Scholar] [CrossRef]
- Dallago, E.; Barnabei, A.L.; Liberale, A.; Malcovati, P.; Venchi, G. An interface circuit for low-voltage low-current energy harvesting systems. IEEE Trans. Power Electron. 2015, 30, 1411–1420. [Google Scholar] [CrossRef]
- Lee, I.; Kim, G.; Bang, S.; Wolfe, A.; Bell, R.; Jeong, S.; Kim, Y.; Kagan, J.; Arias-Thode, M.; Chadwick, B. System-on-mud: Ultra-low power oceanic sensing platform powered by small-scale benthic microbial fuel cells. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 1126–1135. [Google Scholar] [CrossRef]
- Shaikh, F.K.; Zeadally, S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 55, 1041–1054. [Google Scholar] [CrossRef]
- Ieropoulos, I.A.; Greenman, J.; Melhuish, C.; Horsfield, I. Microbial fuel cells for robotics: Energy autonomy through artificial symbiosis. ChemSusChem 2012, 5, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.-E.; Logan, B.E. Voltage reversal during microbial fuel cell stack operation. J. Power Sources 2007, 167, 11–17. [Google Scholar] [CrossRef]
- Aelterman, P.; Rabaey, K.; Pham, H.T.; Boon, N.; Verstraete, W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 2006, 40, 3388–3394. [Google Scholar] [CrossRef] [PubMed]
- Berchmans, S. Microbial Fuel Cell as Alternate Power Tool: Potential and Challenges. In Microbial Fuel Cell; Springer: New York, NY, USA, 2018; pp. 403–419. [Google Scholar]
- Ma, Y.C.; Huang, Y.H. General application research on GSM module. Appl. Mech. Mater. 2012, 151, 96–100. [Google Scholar] [CrossRef]
Parameters | Raw Influent | Septic Tank Effluent | AQUOX Effluent | AQUOX Effluent + Calcium Hypochlorite | NOM 001 (D.A) | NOM 001 (M.A) |
---|---|---|---|---|---|---|
Fecal Coliforms (MPN 100 mL−1) | 4,782,786 ± 6,748,324 | 1,216,606 ± 2,017,474 | 1,055,249 ± 1,711,376 | 3 ± 0 | 2000 | 1000 |
Temperature (°C) | 29 ± 1 | 31 ± 0.1 | 30.7 ± 0.2 | 30.7 ± 1.1 | 40 | 40 |
Fat and Oil (mg L−1) | 59 ± 2 | 48 ± 5 | 6 ± 1 | 4 ± 0 | 25 | 15 |
Sedimentable Solids (mL L−1) | 4 ± 2 | 3 ± 2 | 0.3 ± 0.01 | 0.3 ± 0.01 | 2 | 1 |
Total Suspended Solids (mg L−1) | 224 ± 21 | 217 ± 12 | 10 ± 0.1 | 10 ± 0.1 | 60 | 40 |
Biochemical Oxygen Demand (mg L−1) | 242 ± 48 | 75 ± 16 | 34 ± 10 | 12 ± 2 | 60 | 30 |
Total Nitrogen (mg L−1) | 63 ± 10 | 61 ± 8 | 44 ± 9 | 9.6 ± 0.5 | 25 | 15 |
Total Phosphorus (mg L−1) | 11 ± 3 | 7 ± 1 | 4 ± 0.2 | 4 ± 0.2 | 10 | 5 |
pH | 8.2 ± 0.2 | 7.4 ± 0.2 | 7.4 ± 0.2 | 6.9 ± 0.5 | 5–10 | 5–10 |
Floating Matter | Present | Present | Absent | Absent | Absent | |
Chemical Oxygen Demand (mg L−1) | 789 ± 42 | 316 ± 36 | 114 ± 12 | 100 ± 10 | -- | -- |
Parameters | % Removal Efficiency (without Hypochlorite) | % Removal Efficiency (with Hypochlorite) |
---|---|---|
Fecal Coliforms (MPN∙100 mL−1) | 0 | 100 |
Fat and Oil (mg L−1) | 90 | 93 |
Sedimentable Solids (mL L−1) | 90 | 90 |
Total Suspended Solids (mg L−1) | 95 | 95 |
Biochemical Oxygen Demand (mg L−1) | 87 | 95 |
Total Nitrogen (mg L−1) | 30 | 84 |
Total Phosphorus (mg L−1) | 64 | 64 |
Chemical Oxygen Demand (mg L−1) | 86 | 87 |
Design | Number of Cells | Working Volume (L) | Initial COD (mg/L) | HRT (d) | COD Removal (%) | Waste Type | Anode Material | Cathode Material | MFC Type | Separator | Energy Consumption | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Planar | 150 | 1000 | 250 | 2 | 70-80 | Municipal wastewater | Granular activated carbon | Granular activated carbon | Double chamber | CEM | Catholyte air pump and recirculation | [11] |
Tubular | 96 | 192 | 103 | 12 | 76 | Municipal wastewater | Carbon brush | Carbon cloth with nitrogen coated carbon | Air cathode | CEM CMI-7000 | Catholyte pump | [13] |
Planar | 6 | 65 | 1900 | 9.6 | 36 | Swine manure | Granular graphite | Stainless steel | Double chamber | AEM AMI-7001 | Catholyte pump | [12] |
Tubular | 48 | 96 | 156 | 6 | 80 | Municipal wastewater | Carbon brush | Carbon cloth with nitrogen coated carbon | Air cathode | CEM CMI-7000 | Catholyte pump | [14] |
Rectangular | 10 | 90 | 124 | 6 | 84 | Brewery wastewater | Carbon brush | Activated carbon with PTFE | Air cathode | Textile separator | Wastewater pump | [10] |
Tubular | 18 | 700 | 789 | 3.3 | 87±4.5 | Domestic wastewater | Granular carbon + stainless steel mesh | Carbon cloth with Vulcan carbon | Air cathode | CEM Nafion 117 | Gravity-driven, no energy consumption | This study |
Materials | Unit Cost (USD) | Company |
---|---|---|
Cation Exchange Membrane (N 117) | 9.37 | Gus Industry Co., Ltd. & Mianyang Prochema Commercial Co., Ltd. (Hongkong, China) |
Carbon Cloth (GDL Carbon Cloth Untreated) | 1.59 | ElectroChem Inc. (Woburn, MA, USA) |
Carbon Black Vulcan (XC 72R) | 0.0033 | Fuel Cell Store (College Station, TX, USA) |
Granular Activated Carbon | 1.44 | Carbotecnia (Jalisco, Mexico) |
NAFION®117 Solution 5% Alcohol | 1.80 | Sono Tek Corporation (Milton, NY, USA) |
Stainless Steel Mesh | 2.02 | Hebei Da Shang Wire Mesh Products Co., Ltd. (Hebei, China) |
Isopropyl Alcohol | 0.01 | Bmedina (Merida, Mexico) |
PVC Tube (4 inches) | 1.69 | Niplito (Merida, Mexico) |
Others (PVC cement, cotton tow, pvc coupling) | 6.71 | Niplito (Merida, Mexico) |
Sub Total | 25 | |
Energy Harvesting Circuit | 63 | Deb space (Merida, Mexico) |
Total Cost (9 MFCS) | 285 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valladares Linares, R.; Domínguez-Maldonado, J.; Rodríguez-Leal, E.; Patrón, G.; Castillo-Hernández, A.; Miranda, A.; Diaz Romero, D.; Moreno-Cervera, R.; Camara-chale, G.; Borroto, C.G.; et al. Scale up of Microbial Fuel Cell Stack System for Residential Wastewater Treatment in Continuous Mode Operation. Water 2019, 11, 217. https://doi.org/10.3390/w11020217
Valladares Linares R, Domínguez-Maldonado J, Rodríguez-Leal E, Patrón G, Castillo-Hernández A, Miranda A, Diaz Romero D, Moreno-Cervera R, Camara-chale G, Borroto CG, et al. Scale up of Microbial Fuel Cell Stack System for Residential Wastewater Treatment in Continuous Mode Operation. Water. 2019; 11(2):217. https://doi.org/10.3390/w11020217
Chicago/Turabian StyleValladares Linares, Rodrigo, Jorge Domínguez-Maldonado, Ernesto Rodríguez-Leal, Gabriel Patrón, Alfonso Castillo-Hernández, Alfredo Miranda, Diana Diaz Romero, Rodrigo Moreno-Cervera, Gerardo Camara-chale, Carlos G. Borroto, and et al. 2019. "Scale up of Microbial Fuel Cell Stack System for Residential Wastewater Treatment in Continuous Mode Operation" Water 11, no. 2: 217. https://doi.org/10.3390/w11020217
APA StyleValladares Linares, R., Domínguez-Maldonado, J., Rodríguez-Leal, E., Patrón, G., Castillo-Hernández, A., Miranda, A., Diaz Romero, D., Moreno-Cervera, R., Camara-chale, G., Borroto, C. G., & Alzate-Gaviria, L. (2019). Scale up of Microbial Fuel Cell Stack System for Residential Wastewater Treatment in Continuous Mode Operation. Water, 11(2), 217. https://doi.org/10.3390/w11020217