Atmospheric Teleconnection-Based Extreme Drought Prediction in the Core Drought Region in China
Abstract
:1. Introduction
2. Data and Method
3. Results
3.1. Diagnostic Analysis of Historical Spring Droughts in China
3.2. Changes in Spring Precipitation and Extreme Droughts in China
3.3. Extreme Spring Drought Prediction in the CDR
4. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jefferson, M. IPCC Fifth Assessment Synthesis Report: “Climate Change 2014: Longer Report”: Critical Analysis; Elsevier: New York, NY, USA, 2015; pp. 362–363. [Google Scholar]
- Mishra, A.K.; Desai, V.R. Drought forecasting using feed-forward recursive neural network. Ecol. Model. 2006, 198, 127–138. [Google Scholar] [CrossRef]
- Chen, S.; Muhammad, W.; Lee, J.H.; Kim, T.W. Assessment of Probabilistic Multi-Index Drought Using a Dynamic Naive Bayesian Classifier. Water Resour. Manag. 2018, 32, 4359–4374. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, S.Y.; Kim, J.S.; Sur, C.Y.; Chen, J. Extreme drought hotspot analysis for adaptation to a changing climate: Assessment of applicability to the five major river basins of the Korean Peninsula. Int. J. Climatol. 2018, 38, 4025–4032. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Zhai, J.Q.; Su, B.; Krysanova, V.; Vetter, T.; Gao, C.; Jiang, T. Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J. Clim. 2010, 23, 649–663. [Google Scholar] [CrossRef]
- Breiman, L. Classification and Regression Trees; Routledge: Abingdon, UK, 2017. [Google Scholar]
- Jin, D.; Guan, Z.; Tang, W. The Extreme Drought Event during Winter–Spring of 2011 in East China: Combined Influences of Teleconnection in Midhigh Latitudes and Thermal Forcing in Maritime Continent Region. J. Clim. 2013, 26, 8210–8222. [Google Scholar] [CrossRef]
- Zhang, Q. Drought and its impacts. In China Climate Impact Assessment; China Meteorol Press: Beijing, China, 2003. [Google Scholar]
- Palmer, W.C. Meteorological Drought, Weather Bureau Research Paper No. 45; United States Department of Commerce: Washington, DC, USA, 1965.
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–183. [Google Scholar]
- Heim, J.R.; Richard, R. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar] [CrossRef]
- Zou, X.; Zhai, P.; Zhang, Q. Variations in droughts over China: 1951–2003. Geophys. Res. Lett. 2005, 32, L04707. [Google Scholar] [CrossRef]
- Sun, C.; Yang, S. Persistent severe drought in southern China during winter–spring 2011: Large-scale circulation patterns and possible impacting factors. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Wang, Z.; Zhai, P. Climate Change in Drought over Northern China during 1950–2000. Acta Geogr. Sin. 2003, 58, 61–68. [Google Scholar]
- Hayes, M.J.; Wilhelmi, O.V.; Knutson, C.L. Reducing drought risk: Bridging theory and practice. Nat. Hazards Rev. 2004, 5, 106–113. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Deo, R.C.; Şahin, M. Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmos. Res. 2015, 153, 512–525. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Jin, Q.; Chen, X.; Xu, C.Y.; Jiang, S. On the linkage between the extreme drought and pluvial patterns in china and the large-scale atmospheric circulation. Adv. Meteorol. 2016, 2016, 8010638. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, S.; Wen, J.; Xu, M.; Tan, J. Changing characteristics of precipitation in China during 1960–2012. Int. J. Climatol. 2016, 36, 1387–1402. [Google Scholar] [CrossRef]
- Xin, X.; Yu, R.; Zhou, T.; Wang, B. Drought in Late Spring of South China in Recent Decades. J. Clim. 2006, 19, 3197–3206. [Google Scholar] [CrossRef]
- Kim, J.S.; Seo, G.S.; Jang, H.W.; Lee, J.H. Correlation analysis between Korean spring drought and large-scale teleconnection patterns for drought forecasting. KSCE J. Civ. Eng. 2017, 21, 458–466. [Google Scholar] [CrossRef]
- Irannezhad, M.; Chen, D.; Kløve, B.; Moradkhani, H. Analysing the variability and trends of precipitation extremes in Finland and their connection to atmospheric circulation patterns. Int. J. Climatol. 2017, 37, 1053–1066. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Hurrell, J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Zhou, T. Impacts of winter-NAO on March cooling trends over subtropical Eurasia continent in the recent half century. Geophys. Res. Lett. 2004, 31, 261–268. [Google Scholar] [CrossRef]
- Mo, R.E.; Livezey, R.E. Tropical-extratropical geopotential height teleconnections during the Northern Hemisphere winter. Mon. Weather Rev. 1986, 114, 2488–2515. [Google Scholar] [CrossRef]
- Myronidis, D.; Stathis, D.; Ioannou, K.; Fotakis, D. An Integration of Statistics Temporal Methods to Track the Effect of Drought in a Shallow Mediterranean Lake. Water Resour. Manag. 2012, 26, 4587–4605. [Google Scholar] [CrossRef]
- Szinell, C.S.; Bussay, A.; Szentimrey, T. Drought tendencies in Hungary. Int. J. Climatol. J. R. Meteorol. Soc. 1998, 18, 1479–1491. [Google Scholar] [CrossRef] [Green Version]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Kim, J.S.; Jain, S.; Moon, Y.I. Atmospheric teleconnection-based conditional streamflow distributions for the Han River and its sub-watersheds in Korea. Int. J. Climatol. 2012, 32, 1466–1474. [Google Scholar] [CrossRef]
- Zou, K.H.; O’Malley, A.J.; Mauri, L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 2007, 115, 654–657. [Google Scholar] [CrossRef]
Regions | Prominent Patterns |
---|---|
North Atlantic | North Atlantic Oscillation (NAO) |
East Atlantic (EA) | |
Eurasia | East Atlantic/Western Russia (EATL/WRUS) |
Scandinavia (SCA) | |
Polar/Eurasia (POL) | |
North Pacific/North America | West Pacific (WP) |
Pacific/North American (PNA) | |
Tropical/Northern Hemisphere (TNH) |
Importance of Components | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 |
---|---|---|---|---|---|---|---|---|
Standard deviation | 29.6473 | 12.3784 | 9.96176 | 5.87891 | 4.31489 | 3.18466 | 2.01416 | 3.378 × 10−15 |
Proportion of Variance | 0.7332 | 0.1278 | 0.08278 | 0.02883 | 0.01553 | 0.00846 | 0.00338 | 0.00001 |
Cumulative Proportion | 0.7332 | 0.861 | 0.94379 | 0.97262 | 0.98816 | 0.99662 | 0.99999 | 1 |
Estimate | Std. Error | z value | Pr(>|z|) | Remark | |
---|---|---|---|---|---|
Intercept | 4.6318 | 0.0186 | 249.018 | <2 × 10−16 | *** |
PC1 | −2.3031 | 0.1483 | −15.530 | <2 × 10−16 | *** |
PC2 | 1.5252 | 0.1111 | 13.728 | <2 × 10−16 | *** |
PC3 | −1.0643 | 0.1128 | −9.437 | <2 × 10−16 | *** |
PC4 | −0.7187 | 0.1155 | −6.220 | 5 × 10−10 | *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Q.; Kim, J.-S.; Chen, J.; Chen, H.; Lee, J.-H. Atmospheric Teleconnection-Based Extreme Drought Prediction in the Core Drought Region in China. Water 2019, 11, 232. https://doi.org/10.3390/w11020232
Gao Q, Kim J-S, Chen J, Chen H, Lee J-H. Atmospheric Teleconnection-Based Extreme Drought Prediction in the Core Drought Region in China. Water. 2019; 11(2):232. https://doi.org/10.3390/w11020232
Chicago/Turabian StyleGao, Qinggang, Jong-Suk Kim, Jie Chen, Hua Chen, and Joo-Heon Lee. 2019. "Atmospheric Teleconnection-Based Extreme Drought Prediction in the Core Drought Region in China" Water 11, no. 2: 232. https://doi.org/10.3390/w11020232
APA StyleGao, Q., Kim, J. -S., Chen, J., Chen, H., & Lee, J. -H. (2019). Atmospheric Teleconnection-Based Extreme Drought Prediction in the Core Drought Region in China. Water, 11(2), 232. https://doi.org/10.3390/w11020232