Evaluation of Health Risks Due to Heavy Metals in a Rural Population Exposed to Atoyac River Pollution in Puebla, Mexico
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sampling and Analytical Methods
3.2. Evaluation of the Risk of Diseases due to the Consumption of Metals in Groundwater
3.2.1. Risk of No Cancer Effect
3.2.2. Risk for Cancer Effect
4. Results
4.1. Water Quality in the Population of EPG
4.2. Health Risk Assessment
4.2.1. Risk of Effect No Cancer
4.2.2. Risk for Cancer Effect
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- UNESCO. Agua Para Todos, Agua Para la Vida; Informe de las Naciones Unidas Sobre el Desarrollo de los Recursos Hídricos en el Mundo, 2003; ISBN 92-303881-5. Available online: http://unesdoc.unesco.org/images/0012/001295/129556s.pdf (accessed on 29 November 2018).
- Gil, A.; Reyes, M.A.; Márquez, M.; Cardona, L.; Benavides, A. Disponibilidad y uso eficiente de agua en zonas rurales. Investig. Y Cienc. 2014, 22, 67–73. [Google Scholar]
- DHAyS. Informe Sobre Violaciones a los Derechos Humanos al Agua Potable y al Saneamiento en México. (Informe DHAyS). 2017. Available online: https://agua.org.mx/wp-content/uploads/2017/05/INFORMEDHAyS.pdf (accessed on 29 November 2018).
- SEMARNAT. Plan Nacional de Desarrollo 2013–2018; Programa Nacional Hídrico: Mexico. Available online: https://www.gob.mx/conagua/acciones-y-programas/programa-nacional-hidrico-pnh-2014-2018 (accessed on 29 November 2018).
- Edokpayi, J.; Enitan, A.; Mutileni, N.; Odiyo, J. Evaluation of water quality and human risk assessment due to heavy metals in groundwater around Muledane area of Vhembe District, Limpopo Province, South Africa. Chem. Cent. J. 2018, 12, 2. [Google Scholar] [CrossRef]
- Breña, F.; Breña, J. Disponibilidad de Agua en el Futuro de México. Ciencia 2007, 64–71. Available online: https://www.amc.edu.mx/revistaciencia/images/revista/58_3/PDF/09-550.pdf (accessed on 29 November 2018).
- Chávez, M.; Rivera, G.; Romero, T.; Vizcarra, I. El pozo: Usos, seguridad, y tradición en la subcuenca del río San Javier. Estud. Soc. 2013, 21, 261–286. [Google Scholar] [CrossRef]
- Pérez, G.; Tamariz, V.; López, L.; Hernández, F.; Castelán, R.; Morán, J.L.; García, W.; Díaz, A.; Handal, A. Atoyac River Pollution in the Metropolitan Area of Puebla, México. Water 2018, 10, 267. [Google Scholar] [CrossRef]
- WHO. Protecting Groundwater for Health, Managing the Quality of Drinking-water Sources; TJ International Ltd.: Padstow, UK, 2006; ISBN 13: 9781843390794. [Google Scholar]
- Foster, S.; Hirata, R.; Gomes, D.; D’Elia, M.; Paris, M. Protección de la Calidad del agua Subterránea; Banco Mundial: Washington, DC, USA, 2007; ISBN 84-8476-146-0. [Google Scholar]
- Thompson, T.; Fawell, J.; Kunikane, S.; Jackson, D.; Appleyard, S.; Callan, P.; Bartram, J.; Kingston, P. Chemical Safety of Drinking-Water: Assessing Priorities for Risk Management Chemical Safety; World Health Organization: Geneva, Switzerland, 2007; ISBN 978-92-4-154676-8. [Google Scholar]
- CONAGUA. Reglas de Organización y Operación del Registro Público de Derechos de Agua. DOF. 2002. CONAGUA, México. Available online: http://dof.gob.mx/nota_detalle.php?codigo=715398&fecha=06/12/2002 (accessed on 29 November 2018).
- Rodríguez, L.; Morales, J.A. Contaminación de Atoyac, Daños Ambientales y Tecnologías de Mitigación, 1st ed.; Maporrúa: México, Mexico, 2014; pp. 7–87. ISBN 978-607-28-0329-9. [Google Scholar]
- Comisión Nacional de Derechos Humanos; Recomendación No. 10/2017; CNDH: México City, Mexico, 2017.
- Instituto Nacional de Estadística y Geografía. Anuario Estadístico y Geográfico de Puebla 2016; INEGI: Aguascalientes, México, 2016; ISBN 978-607-739-987-2.
- Rodríguez, L.; Morales, J.; Zavala, P. Evaluación socioeconómica de daños ambientales por contaminación del Río Atoyac en México. Tyca-Retac 2012, 3, 143–151. [Google Scholar]
- Montero, R.; Serrano, L.; Araujo, A.; Dávila, V.; Ponce, J.; Camacho, R.; Morales, E.; Méndez, A. Increased cytogenetic damage in a zone intransition from agricultural to industrial use: Comprehensive analysis of the micronucleus test in peripheral blood lymphocytes. Mutagenesis 2006, 21, 335–342. [Google Scholar] [CrossRef]
- Instituto Mexicano de Tecnología del Agua (IMTA). Estudio de Clasificación del Río Atoyac, Puebla-Tlaxcala; CONAGUA: México City, Mexico, 2005.
- Navarro, I.; Flores, E.; Valladares, R. Evaluación Ambiental y Epidemiológica para Identificar Factores de Riesgo a la Salud por Contaminación del Río Atoyac, México. BVSDE, 2003. Available online: http://www.bvsde.paho.org/bvsAIDIS/PuertoRico29/navarro.pdf (accessed on 29 November 2018).
- Martínez, E.; Rodríguez, P.F.; Shruti, V.C.; Sujitha, S.; Morales, S.; Muñoz, N. Monitoring the seasonal dynamics of physicochemical parameters from Atoyac River basin (Puebla), Central Mexico: Multivariate approach. Environ. Earth Sci. 2017, 76, 1–15. [Google Scholar]
- Sandoval, A.M.; Pulido, G.; Monks, S.; Gordillo, A.J.; Villegas, E.C. Evaluación fisicoquímica, microbiológica y toxicológica de la degradación ambiental del Río Atoyac, México. Interciencia 2009, 34, 880–887. [Google Scholar]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.; Beeregowda, K. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Malik, Q.; Khan, M. Effect on Human Health due to Drinking Water Contaminated with Heavy Metals. J. Pollut. Eff. Cont. 2016, 5. [Google Scholar] [CrossRef]
- Kakkar, P.; Jaffery, F. Biological markers for metal toxicity. Environ. Toxicol. Pharmacol. 2005, 19, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Marcovecchio, J.E.; Botte, S.; Freije, R. Heavy Metals, Major Metals, Trace Elements. In Handbook of Water Analysis, 2nd ed.; Nollet, L.M., Ed.; CRC Press: London, UK, 2007; pp. 275–311. [Google Scholar]
- Momodu, M.; Anyakora, C. Heavy Metal Contamination of Ground Water: The Surulere Case Study. Res. J. Environ. Earth Sci. 2010, 2, 39–43. [Google Scholar]
- Kanwal, R.; Fiza, F.; Iqra, W.; Muhammad, S.; Hamid, A. Prevalence of exposure of heavy metals and their impact onhealth consequences. J. Cell Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef]
- Londoño-Franco, L.; Londoño-Muñoz, L.; Muñoz-García, F. Los riesgos de los metales pesados en la salud humana y animal. Biotecnología en el Sector Agropecuario y Agroindustrial 2016, 14, 145–153. [Google Scholar] [CrossRef]
- Verma, R.; Dwivedi, P. Heavy metal water pollution-A case study. Recent Res. Sci. Technol. 2013, 5, 98–99. [Google Scholar]
- Agency for Toxic Substances and Disease Control. División de Toxicología y Medicina Ambiental. Departamento de Salud y Servicios humanos de los EEUU; Servicio de Salud Pública: Washington, DC, USA, 2011; 269p. [CrossRef]
- Bhargava, P.; Gupta, N.; Vats, S.; Goel, R. Health Issues and Heavy Metals. Austin J. Environ. Toxicol. 2017, 3, 1018. [Google Scholar]
- WHO. Environmental Health Criteria: Copper. International Programme on Chemical Safety; World Health Organization: Geneva, Switzerland, 1998; 104p. [Google Scholar]
- Framework for Metals Risk Assessment. EPA 120/R-07/001, March 2007. Office of the Science Advisor Risk Assessment Forum U.S. Environmental Protection Agency: Washington, DC. 20460. Available online: www.epa.gov/osa (accessed on 20 November 2018).
- USEPA (US Environmental Protection Agency) (2014) USEPA Integrated Risk Information System (IRIS) Online Database. Available online: https://www.epa.gov/sites/production/files/2015-06/documents/iris_report_to_congress_2015.pdf (accessed on 13 November 2018).
- USEPA (US Environmental Protection Agency) (2015) Regulated Drinking Water Contaminants. Online Database. Available online: https://www.epa.gov/dwregdev/how-epa-regulates-drinking-water-contaminants (accessed on 1 October 2018).
- ATSDR (Agency for Toxic Substances and Disease Registry) (2015) Toxicological Profiles, Toxic Substances Portal. Available online: https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=22 (accessed on 10 November 2018).
- IARC (International Agency for Research on Cancer) (2016) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volumes 1–122. Available online: https://monographs.iarc.fr/agents-classified-by-the-iarc/ (accessed on 20 November 2018).
- Martín, P.; Carroquino, M.; Ordóñez, J.M.; Moya, J. La Evaluación de Riesgos en Salud. Guía Metodológica. Aplicaciones Prácticas de la Metodología de Evaluación de Riesgos en salud por Exposición a Químicos; Serie “De aeribus, aquis et locis”; Sociedad Española de Sanidad Ambiental y Escuela Andaluza de Salud Pública: Madrid, Spain, 2016. [Google Scholar]
- USEPA (Environmental Protection Agency of the United State). Guidelines for the Health Risk Assessment of Chemical Mixtures [R]. Washington (DC): US Environmental Protection Agency. ([EPA/630/R-98/002]). 1986. Available online: https://www.epa.gov/sites/production/files/2014-11/documents/chem_mix_1986.pdf (accessed on 11 November 2018).
- Koki, I.; Bayero, A.; Umar, A.; Yusu, S. Health risk assessment of heavy metals in water, air, soil and fish. Afr. J. Pure Appl. Chem. 2015, 9, 204–210. [Google Scholar] [CrossRef]
- Castro, N.P.; Moreno-Rojas, R.; Calderón, F.; Moreno, A.; Juarez, M. Assessment risk to children’s health due to consumption of cow’s milk in polluted areas in Puebla and Tlaxcala, Mexico. Food Addit. Contam. Part B 2017, 10, 200–207. [Google Scholar] [CrossRef]
- Castro, N.P.; Calderón, F.; Moreno, R.; Moreno, A.; Tamariz, J.V. Health risks in rural populations due to heavy metals found in agricultural soils irrigated with wastewater in the Alto Balsas sub-basin in Tlaxcala and Puebla, Mexico. Int. J. Environ. Health Res. 2017, 27, 476–486. [Google Scholar] [CrossRef]
- USEPA (US Environmental Protection Agency). Risk Assessment. 2017. Available online: https://www.epa.gov/risk/human-health-risk-assessment (accessed on 2 October 2018).
- Ghosh, A.K.; Bhatt, M.; Agrawal, H. Effect of long-term applicationof treated sewage water on heavy metal accumulation in vegetables grownin Northern India. Environ. Monit. Assess. 2012, 184, 1025–1036. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yang, W.T.; Zhou, X.; Liu, L.; Gu, J.; Wang, W.L.; Zou, J.L.; Tian, T.; Peng, P.Q.; Liao, B.H. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment. Int. J. Environ. Res. Public Health 2016, 13, 289. [Google Scholar] [CrossRef] [PubMed]
- Sistema Nacional de Información Municipal (SNIM-2010). Available online: http://www.snim.rami.gob.mx/ (accessed on 10 October 2018).
- Martínez, T.; Palerm, J. Antología Sobre Pequeño Riego: Organizaciones Autogestivas; Colegio de Postgraduados y Plaza y Valdés: Cuauhtémoc, México, 2000; pp. 345–407. ISBN 968-856-761-1. [Google Scholar]
- Instituto Nacional de Estadística y Geografía. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. INEGI, México, 2009. Available online: http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/21/21106.pdf (accessed on 6 October 2018).
- American Public Health Association (APHA). Standard Methods: For the Examination of Water and Wastewater, 21st ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Diario Oficial de la Federación (DOF). Determinación de Metales Pesados Por Absorción Atómica en Aguas Naturales, Potables, Residuales y Residuales Tratadas. Método de Prueba; NMX-AA-051-SCFI-2001. México. 2001. Available online: https://www.gob.mx/cms/uploads/attachment/file/166785/NMX-AA-051-SCFI2001.pdf (accessed on 19 October 2018).
- Diario Oficial de la Federación (DOF). Criterios Ecológicos de Calidad del Agua; CE-CCA-001/89. Ciudad de México, México. 1989. Available online: http://legismex.mty.itesm.mx/acu/acca001.pdf (accessed on 6 October 2018).
- Diario Oficial de la Federación (DOF). Agua Para Uso y Consumo Humano. Límites Permisibles de Calidad y Tratamientos a Que Debe Someterse el Agua Para su Potabilización; MODIFICACION NOM-127-SSA1-94. Ciudad de México, México. 2000. Available online: https://www.ucol.mx/content/cms/13/file/NOM/Nom-127-ssa1-1994.pdf (accessed on 3 September 2018).
- Hernández, L.; Stern, D.; Tolentino, L.; Espinosa, J.; Barquera, S. Consumo de Agua en la Población Infantil y Adolescente; Instituto Nacional de Salud Pública: Cuernavaca, México, 2012. [Google Scholar]
- ENSANUT | Encuesta Nacional de Salud y Nutrición 2016. Available online: https://ensanut.insp.mx/ensanut2016/descarga_bases.php (accessed on 4 October 2018).
- USEPA. Integrated Risk Information System. IRIS Assessments. Available online: https://cfpub.epa.gov/ncea/iris2/atoz.cfm (accessed on 6 November 2018).
- USEPA. A Review of the Reference Dose and Reference Concentration Processes. Available online: https://www.epa.gov/osa/review-reference-dose-and-reference-concentration-processes (accessed on 14 October 2018).
- Mohanty, M.; Kumar Patra, H. Effect of ionic and chelate assisted hexavalent chromium on mung bean seedlings (Vigna Radiata l. Wilczek. Var k-851) during seedling growth. JSPB 2013, 9, 232–241. [Google Scholar]
- Ghani, A. Effect of chromium toxicity on growth, chlorophyll and some mineral nutrients of Brassica juncea L. Egypt. Acad. J. Biol. Sci. 2011, 2, 9–15. [Google Scholar]
- Papanikolaou, N.; Hatzidaki, E.; Belivanis, S.; Tzanakakis, G.; Tsatsakis, A. Lead toxicity update. A brief Review. Med Sci. Monit. Int. Med J. Exp. Clin. Res. 2005, 11, RA329–RA336. Available online: http://www.medscimonit.com/fulltxt.php?IDMAN=3687 (accessed on 6 November 2018).
- Kirti Shekhawat, K.; Chatterjee, S.; Joshi, B. Chromium Toxicity and its Health Hazards. Int. J. Adv. Res. 2015, 3, 167–172. [Google Scholar]
- Martin, S.; Griswold, W. Human health effects of heavy metals. Environ. Sci. Technol. Briefs Citiz. 2009, 15, 1–6. [Google Scholar]
- Ávila, D. Fitoremediación de suelos contaminados por elementos potencialmente tóxicos en la región de Atlixco, Puebla; Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla: México, 2017. [Google Scholar]
- NOM-147-SEMARNAT/SSA1-2004. Norma Oficial Mexicana, que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. Available online: https://www.gob.mx/profepa/documentos/norma-oficial-mexicana-nom-147-semarnat-ssa1-2004 (accessed on 12 November 2018).
- Pintilie, S.; Brânză, L.; Beţianu, C.; Pavel, P.; Ungureanu, F.; Gavrilescu, M. Modelling and simulation of heavy metals transport. Environ. Eng. Manag. J. 2007, 2, 153–161. [Google Scholar]
- Odiyo, J.; Makungo, R. Fluoride concentrations in groundwater and impact on human health in Siloam Village, Limpopo Province, South Africa. Water SA 2012, 38, 731–736. [Google Scholar] [CrossRef]
- Silbergeld, E. Toxicología. In Enciclopedia de Salud y Seguridad en el Trabajo; Ministerio de Trabajo y Asuntos Sociales Subdirección General de Publicaciones: Madrid, Spain, 1988; Cap 33; ISBN 84-8417-047-0. [Google Scholar]
- Lanphear, B.; Dietrich, K.; Auinger, P. Cognitive deficits associated with blood lead concentration <10 µg/dL in: U.S. children and adolescents. Public Health Rep. 2012, 4, 521–529. [Google Scholar]
- Singh Sankhla, M.; Sharma, K.; Kumar, R. Heavy Metal Causing Neurotoxicity in Human Health. IJIRSET 2017, 6. [Google Scholar] [CrossRef]
- Ziegler, E.; Edwards, B.; Jensen, R.; Mahaffey, K.; Fomon, S. Absorption and retention of lead by infants. Pediatr. Res. 1978, 12, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Dorea, J.; Donangelo, C. Early (in uterus and infant) exposure to mercury and lead. Clin. Nutr. 2006, 25, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Ackova, D.G. Heavy metals and their general toxicity on plants. Plant Sci. Today 2018, 5, 14–18. [Google Scholar] [CrossRef]
- Latif, A.; Bilal, M.; Asghar, W.; Azeem, M.; Ahmad, M.I.; Abbas, A.; Admah, M.; Shahzad, T. Heavy Metal Accumulation in Vegetables and Assessment of their Potential Health Risk. J. Environ. Anal. Chem. 2018, 5, 234. [Google Scholar] [CrossRef]
- Li, Z. The use of a disability-adjusted life-year (DALY) metric to measure human health damage resulting from pesticide maximum legal exposures. Sci. Total Environ. 2018, 438–456. [Google Scholar] [CrossRef] [PubMed]
- Li, Z. A health-based regulatory chain framework to evaluate international pesticide groundwater regulations integrating soil and drinking water standards. Environ. Int. 2018, 1253–1278. [Google Scholar] [CrossRef] [PubMed]
Parameters (n = 45) | Well Mean | SD * | Min. | Max. | Rainy (mean) | Dry (mean) | p-Value | NOM-127 + | CE |
---|---|---|---|---|---|---|---|---|---|
T (°C) | 21.17 | 1.2 | 20 | 25 | 20.70 | 22.56 | 0.001 * | - | - |
pH | 7.38 | 0.2 | 6.8 | 7.8 | 7.30 | 7.6 | 0.000 * | 6.5–8.5 | 5–9 |
O2 (mg/L) | 3.09 | 0.8 | 1.6 | 4.5 | 2.98 | 3.42 | 0.181 | - | 4 |
Al (mg/L) | 0.062 | 0.040 | 0.00 | 0.156 | 0.016 | 0.108 | 0.150 | 0.20 | 0.02 |
Fe (mg/L) | 0.394 | 0.424 | 0.00 | 1.900 | 0.107 | 0.682 | 0.010 * | 0.3 | 0.3 |
Zn (mg/L) | 0.018 | 0.022 | 0.00 | 0.111 | 0.004 | 0.033 | 0.009 * | 5 | 5 |
Ni (mg/L) | 0.013 | 0.026 | 0.00 | 0.089 | 0.003 | 0.024 | 0.019 * | - | 0.01 |
Pb (mg/L) | 0.006 | 0.015 | 0.00 | 0.056 | 0.000 | 0.012 | 0.000 * | 0.01 | 0.05 |
Cr (mg/L) | 0.001 | 0.002 | 0.00 | 0.011 | 0.001 | 0.002 | 0.721 | 0.05 | 0.05 |
Cu (mg/L) | 0.015 | 0.018 | 0.00 | 0.089 | 0.001 | 0.030 | 0.000 * | 2 | 1 |
Parameters (n = 15) | Spring Mean | SD * | Min. | Max. | Rainy (mean) | Dry (mean) | p-Value | NOM-127 + | CE |
---|---|---|---|---|---|---|---|---|---|
T (°C) | 21.75 | 0.866 | 21 | 23 | 21.33 | 23 | 0.006 * | - | - |
pH | 7.24 | 0.215 | 6.8 | 7.4 | 7.20 | 7.37 | 0.240 | 6.5–8.5 | 5–9 |
O2 (mg/L) | 1.96 | 0.198 | 1.6 | 2.3 | 2.00 | 1.83 | 0.108 | - | 4 |
Al (mg/L) | 0.007 | 0.013 | 0.00 | 0.044 | 0.000 | 0.014 | 0.102 | 0.20 | 0.02 |
Fe (mg/L) | 0.209 | 0.208 | 0.00 | 0.533 | 0.000 | 0.418 | 0.001 * | 0.3 | 0.3 |
Zn (mg/L) | 0.011 | 0.012 | 0.00 | 0.033 | 0.000 | 0.022 | 0.001 * | 5 | 5 |
Ni (mg/L) | 0.001 | 0.003 | 0.00 | 0.011 | 0.000 | 0.003 | 0.102 | - | 0.01 |
Pb (mg/L) | 0.008 | 0.007 | 0.00 | 0.020 | 0.003 | 0.013 | 0.142 | 0.01 | 0.05 |
Cr (mg/L) | 0.006 | 0.006 | 0.00 | 0.033 | 0.002 | 0.011 | 0.363 | 0.05 | 0.05 |
Cu (mg/L) | 0.018 | 0.018 | 0.00 | 0.044 | 0.000 | 0.036 | 0.001 * | 2 | 1 |
Heavy Metals | Well Water (Mean) | Well Water Rainy (Mean) | Well Water Dry (Mean) | ||||||
---|---|---|---|---|---|---|---|---|---|
HQ | Children | Teens | Adults | Children | Teens | Adults | Children | Teens | Adults |
Al | 0.009 | 0.005 | 0.004 | 0.002 | 0.001 | 0.001 | 0.016 | 0.009 | 0.008 |
Fe | 0.012 | 0.007 | 0.005 | 0.003 | 0.002 | 0.001 | 0.020 | 0.012 | 0.010 |
Zn | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.002 | 0.001 | 0.001 |
Ni | 0.014 | 0.008 | 0.007 | 0.003 | 0.002 | 0.001 | 0.025 | 0.015 | 0.012 |
Pb | 0.003 | 0.002 | 0.002 | 0.000 | 0.000 | 0.000 | 0.007 | 0.004 | 0.003 |
Cr | 0.010 | 0.006 | 0.005 | 0.007 | 0.004 | 0.003 | 0.014 | 0.008 | 0.007 |
Cu | 0.009 | 0.005 | 0.004 | 0.001 | 0.000 | 0.000 | 0.017 | 0.010 | 0.008 |
HI | 0.059 | 0.035 | 0.028 | 0.017 | 0.010 | 0.008 | 0.102 | 0.060 | 0.047 |
Heavy Metals | Spring Water (Mean) | Spring Water Rainy (Mean) | Spring Water Dry (Mean) | ||||||
---|---|---|---|---|---|---|---|---|---|
HQ | Children | Teens | Adults | Children | Teens | Adults | Children | Teens | Adults |
Al | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.001 | 0.001 |
Fe | 0.006 | 0.004 | 0.003 | 0.000 | 0.000 | 0.000 | 0.012 | 0.007 | 0.006 |
Zn | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.001 | 0.001 |
Ni | 0.002 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.003 | 0.002 | 0.001 |
Pb | 0.005 | 0.003 | 0.002 | 0.002 | 0.001 | 0.001 | 0.008 | 0.004 | 0.004 |
Cr | 0.045 | 0.027 | 0.021 | 0.014 | 0.008 | 0.007 | 0.077 | 0.045 | 0.036 |
Cu | 0.010 | 0.006 | 0.005 | 0.000 | 0.000 | 0.000 | 0.020 | 0.012 | 0.009 |
HI | 0.070 | 0.041 | 0.033 | 0.016 | 0.009 | 0.007 | 0.124 | 0.073 | 0.058 |
Heavy Metals | Children | Teenagerss | Adults | |||
---|---|---|---|---|---|---|
CRI | Spring W | Well W | Spring W | Well W | Spring W | Well W |
Chrome | 3.2 × 10−4 | 7.5 × 10−5 | 3.9 × 10−5 | 9.2 × 10−6 | 3.1 × 10−5 | 7.3 × 10−6 |
Lead | 6.8 × 10−6 | 5.1 × 10−6 | 8.0 × 10−7 | 6.0 × 10−7 | 7.0 × 10−7 | 5.0 × 10−7 |
∑CRI | 3.3 × 10−4 | 8.0 × 10−5 | 4.0 × 10−5 | 9.8 × 10−6 | 3.2 × 10−5 | 7.8 × 10−6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez Castresana, G.; Castañeda Roldán, E.; García Suastegui, W.A.; Morán Perales, J.L.; Cruz Montalvo, A.; Handal Silva, A. Evaluation of Health Risks Due to Heavy Metals in a Rural Population Exposed to Atoyac River Pollution in Puebla, Mexico. Water 2019, 11, 277. https://doi.org/10.3390/w11020277
Pérez Castresana G, Castañeda Roldán E, García Suastegui WA, Morán Perales JL, Cruz Montalvo A, Handal Silva A. Evaluation of Health Risks Due to Heavy Metals in a Rural Population Exposed to Atoyac River Pollution in Puebla, Mexico. Water. 2019; 11(2):277. https://doi.org/10.3390/w11020277
Chicago/Turabian StylePérez Castresana, Gabriela, Elsa Castañeda Roldán, Wendy A. García Suastegui, José L. Morán Perales, Abel Cruz Montalvo, and Anabella Handal Silva. 2019. "Evaluation of Health Risks Due to Heavy Metals in a Rural Population Exposed to Atoyac River Pollution in Puebla, Mexico" Water 11, no. 2: 277. https://doi.org/10.3390/w11020277
APA StylePérez Castresana, G., Castañeda Roldán, E., García Suastegui, W. A., Morán Perales, J. L., Cruz Montalvo, A., & Handal Silva, A. (2019). Evaluation of Health Risks Due to Heavy Metals in a Rural Population Exposed to Atoyac River Pollution in Puebla, Mexico. Water, 11(2), 277. https://doi.org/10.3390/w11020277