Process Optimization Study of Zn2+ Adsorption on Biochar-Alginate Composite Adsorbent by Response Surface Methodology (RSM)
Abstract
:1. Introduction
2. Materials and Method
3. Theory of Response Surface Methodology (RSM) Optimization Technique
4. Results and Discussion
4.1. Model Development
4.2. Combined Effect of Independent Parameters on Zn2+ Removal
4.3. Response Surface Modeling and Process Optimization
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, J.; Chen, J.P.A. Comprehensive Review on Biosorption of Heavy Metals by Algal Biomass: Materials, Performances, Chemistry, and Modeling Simulation Tools. Bioresour. Technol. 2014, 160, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Kara, İ.; Yilmazer, D.; Akar, S.T. Metakaolin Based Geopolymer as an Effective Adsorbent for Adsorption of Zinc(II) and Nickel(II) Ions from Aqueous Solutions. Appl. Clay Sci. 2017, 139, 54–63. [Google Scholar] [CrossRef]
- Hojati, S.; Landi, A. Kinetics and Thermodynamics of Zinc Removal from a Metal-Plating Wastewater by Adsorption onto an Iranian Sepiolite. Int. J. Environ. Sci. Technol. 2015, 12, 203–210. [Google Scholar] [CrossRef]
- Arias, F.; Sen, T.K. Removal of Zinc Metal Ion (Zn2+) from Its Aqueous Solution by Kaolin Clay Mineral: A Kinetic and Equilibrium Study. Colloids Surf. A Physicochem. Eng. Asp. 2009, 348, 100–108. [Google Scholar] [CrossRef]
- Charerntanyarak, L. Heavy Metals Removal by Chemical Coagulation and Precipitation. Water Sci. Technol. 1999, 39, 135–138. [Google Scholar] [CrossRef]
- Dabrowski, A.; Hubicki, Z.; Podkoscielny, P.; Robens, E. Selective Removal of the Heavy Metal Ions from Waters and Industrial Wastewaters by Ion-Exchange Method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Qdais, H.A.; Moussa, H. Removal of Heavy Metals from Wastewater by Membrane Processes: A Comparative Study. Desalination 2004, 164, 105–110. [Google Scholar] [CrossRef]
- Dawood, S.; Sen, T.K.; Phan, C. Synthesis and Characterisation of Novel-Activated Carbon from Waste Biomass Pine Cone and Its Application in the Removal of Congo Red Dye from Aqueous Solution by Adsorption. Water Air. Soil Pollut. 2014, 225. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.H.; Babel, S. Physico-Chemical Treatment Techniques for Wastewater Laden with Heavy Metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Biswas, S.; Sen, T.K.; Yeneneh, A.M.; Meikap, B.C. Synthesis and Characterization of a Novel Ca-Alginate-Biochar Composite as Efficient Zinc (Zn2+) Adsorbent: Thermodynamics, Process Design, Mass Transfer and Isotherm Modeling. Sep. Sci. Technol. 2018, 1–19. [Google Scholar] [CrossRef]
- Behera, S.K.; Meena, H.; Chakraborty, S.; Meikap, B.C. Application of Response Surface Methodology (RSM) for Optimization of Leaching Parameters for Ash Reduction from Low-Grade Coal. Int. J. Min. Sci. Technol. 2018, 28, 621–629. [Google Scholar] [CrossRef]
- Tripathy, A.; Biswal, S.K.; Meikap, B.C. Statistical Modelling and Optimization Study for Beneficiation of Indian High Ash Semi-Coking Coal Using Allflux Separator. Adv. Powder Technol. 2016, 27, 1488–1493. [Google Scholar] [CrossRef]
- Das, D.; Meikap, B.C. Optimization of Process Condition for the Preparation of Amine-Impregnated Activated Carbon Developed for CO 2 Capture and Applied to Methylene Blue Adsorption by Response Surface Methodology. J. Environ. Sci. Heal. Part A 2017, 52, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Panda, L.; Banerjee, P.K.; Biswal, S.K.; Venugopal, R.; Mandre, N.R. Modelling and Optimization of Process Parameters for Beneficiation of Ultrafine Chromite Particles by Selective Flocculation. Sep. Purif. Technol. 2014, 132, 666–673. [Google Scholar] [CrossRef]
- Aghaie, E.; Pazouki, M.; Hosseini, M.R.; Ranjbar, M.; Ghavipanjeh, F. Response Surface Methodology (RSM) Analysis of Organic Acid Production for Kaolin Beneficiation by Aspergillus Niger. Chem. Eng. J. 2009, 147, 245–251. [Google Scholar] [CrossRef]
- Gratuito, M.K.B.; Panyathanmaporn, T.; Chumnanklang, R.A.; Sirinuntawittaya, N.; Dutta, A. Production of Activated Carbon from Coconut Shell: Optimization Using Response Surface Methodology. Bioresour. Technol. 2008, 99, 4887–4895. [Google Scholar] [CrossRef] [PubMed]
- Saranya, N.; Nakeeran, E.; Giri Nandagopal, M.S.; Selvaraju, N. Optimization of Adsorption Process Parameters by Response Surface Methodology for Hexavalent Chromium Removal from Aqueous Solutions Using Annona Reticulata Linn Peel Microparticles. Water Sci. Technol. 2017, 75, 2094–2107. [Google Scholar] [CrossRef] [PubMed]
- Niad, M.; Zaree, S.; Tahanzadeh, N. Response Surface Methodology for Optimization of Cd (II) Biosorption by Cystoseria Myricaas. J. Biomed. 2016. [Google Scholar] [CrossRef]
- Sarkar, M.; Majumdar, P. Application of Response Surface Methodology for Optimization of Heavy Metal Biosorption Using Surfactant Modified Chitosan Bead. Chem. Eng. J. 2011. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bruns, R.E.; da Silva, E.G.P.; dos Santos, W.N.L.; Quintella, C.M.; David, J.M.; de Andrade, J.B.; Breitkreitz, M.C.; Jardim, I.C.S.F.; Neto, B.B. Statistical Designs and Response Surface Techniques for the Optimization of Chromatographic Systems. J. Chromatogr. A. 2007. [Google Scholar] [CrossRef] [PubMed]
- Isar, J.; Agarwal, L.; Saran, S.; Saxena, R.K. A Statistical Method for Enhancing the Production of Succinic Acid from Escherichia Coli under Anaerobic Conditions. Bioresour. Technol. 2006. [Google Scholar] [CrossRef] [PubMed]
Standard Runs | Coded Variables | Variables in Actual Form | The Removal Efficiency of Zn2+ (%) | ||||
---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X1 (mg/L) | X2 (g) | X3 (K) | ||
16 | 0 | 0 | 0 | 62.5 | 0.64 | 308 | 81 |
10 | α | 0 | 0 | 100 | 0.42 | 308 | 78 |
14 | 0 | 0 | α | 62.5 | 0.42 | 318 | 83 |
5 | −1 | −1 | 1 | 40.17 | 0.19 | 313.95 | 82 |
9 | −α | 0 | 0 | 25 | 0.42 | 308 | 89 |
15 | 0 | 0 | 0 | 62.50 | 0.42 | 308 | 83 |
4 | 1 | 1 | −1 | 84.8 | 0.65 | 302.05 | 77 |
3 | −1 | 1 | −1 | 40.20 | 0.65 | 302.05 | 84 |
11 | 0 | −α | 0 | 62.5 | 0.04 | 308 | 75 |
19 | 0 | 0 | 0 | 62.5 | 0.42 | 308 | 81 |
17 | 0 | 0 | 0 | 62.5 | 0.42 | 308 | 81 |
20 | 0 | 0 | 0 | 62.5 | 0.42 | 308 | 81 |
7 | −1 | 1 | 1 | 40.20 | 0.65 | 313.95 | 87 |
2 | 1 | −1 | −1 | 84.80 | 0.19 | 302.05 | 72 |
1 | −1 | −1 | −1 | 40.20 | 0.19 | 302.05 | 79 |
13 | 0 | 0 | −α | 62.50 | 0.42 | 298 | 77 |
6 | 1 | −1 | 1 | 84.80 | 0.19 | 313.95 | 76 |
8 | 1 | 1 | 1 | 84.80 | 0.65 | 313.95 | 82 |
12 | 0 | α | 0 | 62.5 | 0.8 | 308 | 86 |
18 | 0 | 0 | 0 | 62.5 | 0.42 | 308 | 81 |
Coded Variables | Variables at Its Actual Level |
---|---|
−α | |
−1 | |
0 | |
+1 | |
+α |
Name | −1 Level | +1 Level | −α | +α |
---|---|---|---|---|
Initial metal ion concentration (X1) | 40.17 | 84.8 | 25 | 100 |
Adsorbent dose (X2) | 0.19 | 0.65 | 0.04 | 0.8 |
Temperature (X3) | 302 | 323.95 | 298 | 318 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value Prob. > F | Remarks |
---|---|---|---|---|---|---|
Model | 318.02 | 9 | 35.34 | 30.13 | <0.0001 | Significant |
X1 | 138.56 | 1 | 138.56 | 118.14 | <0.0001 | Significant |
X2 | 114.25 | 1 | 114.25 | 97.41 | <0.0001 | Significant |
X3 | 46.10 | 1 | 46.10 | 39.31 | 0.0006 | Significant |
X1X2 | 0.13 | 1 | 0.13 | 0.11 | 0.0758 | |
X1X3 | 1.13 | 1 | 1.13 | 0.96 | 0.3505 | |
X2X3 | 0.13 | 1 | 0.13 | 0.11 | 0.75 | |
X12 | 3.03 | 1 | 3.03 | 2.58 | 0.1392 | |
X22 | 5.23 | 1 | 5.23 | 4.46 | 0.0609 | |
X32 | 8.75 | 1 | 8.75 | 7.46 | 0.0211 | |
Residual | 11.73 | 10 | 1.17 | |||
Lack of Fit | 8.39 | 5 | 1.68 | 2.52 | 0.1668 | |
Pure Error | 3.33 | 5 | 0.67 | |||
Correlation Total | 329.75 | 19 |
Source | Std. Dev. | R2 | Adjusted R2 | Predicted R2 | Comments |
---|---|---|---|---|---|
Linear | 1.39 | 0.906 | 0.9 | 0.85 | |
2FI | 1.51 | 0.91 | 0.89 | 0.78 | |
Quadratic | 1.03 | 0.97 | 0.94 | 0.86 | Suggested |
Cubic | 1.3 | 0.96 | 0.92 | 0.77 | Aliased |
Condition | Initial Metal Ion Concentration (mg/L) | Adsorbent Dose (g) | System Temperature (K) | Zn2+ Removal Efficiency (%) | |
---|---|---|---|---|---|
Predicted | Experimental | ||||
Optimum condition | 43.18 | 0.62 | 313.15 | 85.02% | 86.05% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, S.; Bal, M.; Behera, S.K.; Sen, T.K.; Meikap, B.C. Process Optimization Study of Zn2+ Adsorption on Biochar-Alginate Composite Adsorbent by Response Surface Methodology (RSM). Water 2019, 11, 325. https://doi.org/10.3390/w11020325
Biswas S, Bal M, Behera SK, Sen TK, Meikap BC. Process Optimization Study of Zn2+ Adsorption on Biochar-Alginate Composite Adsorbent by Response Surface Methodology (RSM). Water. 2019; 11(2):325. https://doi.org/10.3390/w11020325
Chicago/Turabian StyleBiswas, Subrata, Manisha Bal, Sushanta Kumar Behera, Tushar Kanti Sen, and Bhim Charan Meikap. 2019. "Process Optimization Study of Zn2+ Adsorption on Biochar-Alginate Composite Adsorbent by Response Surface Methodology (RSM)" Water 11, no. 2: 325. https://doi.org/10.3390/w11020325
APA StyleBiswas, S., Bal, M., Behera, S. K., Sen, T. K., & Meikap, B. C. (2019). Process Optimization Study of Zn2+ Adsorption on Biochar-Alginate Composite Adsorbent by Response Surface Methodology (RSM). Water, 11(2), 325. https://doi.org/10.3390/w11020325