Beach Morphodynamic Response to a Submerged Reef
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Beach Morphology Monitoring
3.2. Tidal Level, Wave Parameters, and Cell Circulation Monitoring
3.3. Shoreline Non-Dimensional Models
4. Results
4.1. Beach Mobility
4.1.1. Deposition Mechanism
4.1.2. Erosion Mechanism
4.1.3. Dissipative Case
4.2. Non-Dimensional Models
5. Discussion
5.1. Shoreline Response to V-Shape Submerged Structure
5.2. Multifunctional Submerged Coastal Structure
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guza, R.T.; Inman, D.L. Edge waves and beach cusps. J. Geophys. Res. 1975, 80, 2997–3012. [Google Scholar] [CrossRef]
- Short, A.D. Three dimensional beach-stage model. J. Geol. 1979, 87, 553–571. [Google Scholar] [CrossRef]
- Holman, R.A.; Bowen, A.J. Bars, Bumps, and Holes’ Models for the Generation of Complex Beach Topography. J. Geophys. Res. 1982, 87, 457–468. [Google Scholar] [CrossRef]
- Wright, L.D.; Short, A.D. Morphodynamic Variability of Surf Zones and Beaches. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Masselink, G.; Short, A.D. The effect of tide range on beach morphodynamics and morphology: A conceptual beach model. J. Coast. Res. 1993, 9, 785–800. [Google Scholar]
- Short, A.D.; Klein, A.H.F. Brazilian Beach Systems: Introduction. In Brazilian Beach System; Short, A.D., Klein, A.H.F., Eds.; Coastal Research Library: Boca Raton, FL, USA, 2016. [Google Scholar]
- Price, T.D.; Ruessink, B.G.; Castelle, B. Morphological coupling in multiple sandbar systems—A review. Earth Surf. Dyn. 2014, 2, 309–321. [Google Scholar] [CrossRef]
- Aleman, N.; Robin, N.; Certain, R.; Anthony, E.J.; Barusseau, J.P. Longshore variability of beach states and bar types in a microtidal storm-influenced, low-energy environment. Geomorphology 2015, 241, 175–191. [Google Scholar] [CrossRef]
- Dean, R. Equilibrium beach profiles: Principles and applications. J. Coast. Res. 1991, 7, 53–84. [Google Scholar]
- Black, K.P.; Andrews, C.J. Sandy shoreline response to offshore obstacles, Part 1: Salient and tombolo geometry and shape. J. Coast. Res. 2001, 29, 82–93. [Google Scholar] [CrossRef]
- Gallop, S.L.; Bosserelle, C.; Pattiaratchi, C.B. The influence of coastal reefs on spatial variability in seasonal sand fluxes. Mar. Geol. 2013, 344, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Allison, H.E.; Bassett, R.H. Climate change in the ocean: Human impacts and responses. Science 2015, 350, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Population Reference Bureau. World Population Data Sheet, With A Special Focus on Human Needs and Sustainable Resources; Thecnical Report; Population Reference Bureau: Washington, DC, USA, 2016. [Google Scholar]
- United Nations. World Statistics Pocketbook; Thecnical Report; United Nations: New York, NY, USA, 2016. [Google Scholar]
- Black, K.P.; Andrews, C.J. Sandy shoreline response to offshore obstacles, Part 2: Discussion of formative mechanisms. J. Coast. Res. 2001, 29, 95–101. [Google Scholar]
- Black, K.; Mead, S. Design of the Gold Coast Reef for Surfing, Public Amenity and Coastal Protection: Surfing Aspect. J. Coast. Res. 2001, 29, 115–130. [Google Scholar]
- Pilarczyk, K.W. Design of Low-Crested (Submerged) Structures—An Overview. In Proceedings of the 6th International Conference on Coastal and Port Engineering in Developing Countries, Colombo, Sri Lanka, 14–19 September 2003; p. 19. [Google Scholar]
- Ranasinghe, R.; Turner, I.L. Shoreline response to submerged structures: A review. Coast. Eng. 2006, 53, 65–79. [Google Scholar] [CrossRef]
- Neves, L.; Moreira, A.; Taveira-Pinto, F.; Lopes, M.L.; Veloso-Gomes, F. Performance of submerged nearshore sand-filled geosystems for coastal protection. Coast. Eng. 2015, 95, 147–159. [Google Scholar] [CrossRef]
- Mead, S.; Black, K.P. Functional Component Combinations Controlling Surfing Wave Quality at World-Class Surfing Breaks. J. Coast. Res. 2001, 29, 21–32. [Google Scholar]
- Slotkin, M.H.; Chambliss, K.; Vamosi, A.R.; Lindo, C. Feasibility Study of Multi-Purpose Artificial Surf Reefs for Brevard County, Florida (Economic Segment); Report; PRAECIPIO EFS Inc., Economical Finance Statistics: Palm Bay, FL, USA, 2008; p. 81. [Google Scholar]
- Ranasinghe, R.; Larson, M.; Savioli, J. Shoreline response to a single shore-parallel submerged breakwater. Coast. Eng. 2010, 57, 1006–1017. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Turner, I.L.; Symonds, G. Shoreline response to multi-functional artificial surfing reefs: A numerical and physical modelling study. Coast. Eng. 2006, 53, 589–611. [Google Scholar] [CrossRef]
- Pilkey, O.H.; Cooper, J.A.G. “Alternative” Shoreline Erosion Control Devices: A Review. In Pitfalls of Shoreline Stabilization: Selected Case Studies; Cooper, J.A.G., Pilkey, O.H., Eds.; Coastal Research Library: Boca Raton, FL, USA, 2012; pp. 187–214. [Google Scholar]
- Aagaard, T.; Greenwood, B. Infragravity wave contribution to surf zone sediment transport: The role of advection. Mar. Geol. 2008, 251, 1–14. [Google Scholar] [CrossRef]
- Falqueś, A.; Coco, G.; Huntley, D. A mechanism for the generation of wave-driven rhythmic patterns in the surf zone. J. Geophys. Res. 2000, 105, 24071–24088. [Google Scholar] [CrossRef]
- Coco, G.; Murray, A.B. Patterns in the sand: From forcing tem-plates to self-organization. Geomorphology 2008, 91, 271–290. [Google Scholar] [CrossRef]
- Wright, L.D.; Guza, R.T.; Short, A.D. Dynamics of a High-Energy Dissipative Surf Zone. Mar. Geol. 1982, 45, 41–62. [Google Scholar] [CrossRef]
- Werner, B.T.; Fink, T.M. Beach cusps as self-organised patterns. Science 1993, 260, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Castelle, B.; Ruessink, B.G.; Bonneton, P.; Marieu, V.; Bruneau, N.; Price, T.D. Coupling mechanisms in double sandbar systems. Part 1: Patterns and physical explanation. Earth Surf. Process. Landforms 2010, 35, 476–486. [Google Scholar] [CrossRef]
- Caballeria, M.; Coco, G.; Falqués, C.A.; Huntley, D.A. Self-organization mechanisms for the formation of nearshore crescentic sand bars. J. Fluid Mech. 2002, 465, 379–410. [Google Scholar] [CrossRef]
- Muehe, D.; Lins-de-Barros, F.M. The Beachesof Rio de Janeiro. In Brazilian Beach Systems; Short, A.D., Klein, A.H.F., Eds.; Coastal Research Library: Boca Raton, FL, USA, 2016; pp. 363–396. [Google Scholar]
- Ng, K.; Thomas, T.; Michael, R.P.; Helena, C.; Borges, P.; Veloso-Gomes, F. Multifunctional artificial reefs for small islands: An evaluation of amenity and opportunity for São Miguel Island, the Azores. Prog. Phys. Geogr. 2015, 39, 220–257. [Google Scholar] [CrossRef]
- Reboita, M.S.; Rocha, R.P.; Ambrizzi, T.; Sugahara, S. South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Clim. Dyn. 2010, 35, 1331–1347. [Google Scholar] [CrossRef]
- Walker, J.R.; Palmer, R.Q.; Kukea, J.K. Recreational surfing on Hawaiian reefs. In Proceedings of the 13th Coastal Engineering Conference, Vancouver, BC, Canada, 10–14 July 1972. [Google Scholar]
- Black, K.; Mead, S. Design of Surfing Reefs. Reef J. 2009, 1, 177–191. [Google Scholar]
- MacMahan, J.; Brown, J.; Brown, J.; Thornton, E.; Reniers, A.; Stanton, T.; Henriquez, M.; Gallagher, E.; Morrison, J.; Austin, M.J.; et al. Mean Lagrangian flow behaviour on an open coast rip-channeled beach: A new perspective. Mar. Geol. 2010, 268, 1–15. [Google Scholar]
- Angremond, K.; Van der Meer, J.W.; Jong, R.J. Wave transmission at low-crested structures. In Proceedings of the 25th International Conference on Coastal Engineering, Orlando, FL, USA, 2–6 September 1996; pp. 1930–1935. [Google Scholar]
- Battjes, J.A. Surf similarity. In Proceedings of the 14th International Conference on Coastal Engineering, Copenhagen, Denmark, 24–28 June 1974; pp. 466–480. [Google Scholar]
- Ranasinghe, R.; Sato, S. Beach Morphology Behind Single Impermeable Submerged Breakwater Under Obliquely Incident Waves. Coast. Eng. J. 2007, 49, 1–24. [Google Scholar] [CrossRef]
- Sumer, B.M.; Whitehouse, R.J.S.; Tørum, A. Scour around coastal structures: A summary of recent research. Coast. Eng. 2001, 44, 153–190. [Google Scholar] [CrossRef]
- Staublet, D.K.; Tabart, J.R. The Use of Submerged Narrow-Crested Breakwaters for Shoreline Erosion Control. J. Coast. Res. 2003, 19, 684–722. [Google Scholar]
- Jackson, L.A.; Corbett, B.B.; McGrath, J.; Tomlinson, R.; Stuart, G. Narrowneck reef: Review of seven years of monitoring. Shore Beach 2007, 75, 1–13. [Google Scholar]
- Hoefel, F.; Elgar, S. Wave-Induced Sediment Transport and Sandbar Migration. Science 2003, 299, 1885–1887. [Google Scholar] [CrossRef] [PubMed]
Group | Case | Tp (s) | Hb (m) | Hb_before (m) | hB (m) | SB (m) |
---|---|---|---|---|---|---|
Accretion | 1. 16 | 2. 14.49 | 3. 0.87 | 4. 1.42 | 5. 2.73 | 6. 1.33 |
7. Accretion | 8. 17 | 9. 9.51 | 10. 1.13 | 11. 0.95 | 12. 3.09 | 13. 1.79 |
14. Accretion | 15. 18 | 16. 11.72 | 17. 1.27 | 18. 1.35 | 19. 3.11 | 1.36 |
20. Accretion | 21. 19 | 22. 11.22 | 23. 1.03 | 24. 1.24 | 25. 2.81 | 26. 1.61 |
27. Accretion | 28. 20 | 29. 12.10 | 30. 1.31 | 31. 1.03 | 32. 3.32 | 33. 1.62 |
34. Erosion | 35. 21 | 36. 9.80 | 37. 1.16 | 38. 1.08 | 4.34 | 39. 2.14 |
40. Erosion | 41. 22 | 42. 9.52 | 43. 1.11 | 44. 1.34 | 45. 2.95 | 46. 2.25 |
47. Erosion | 48. 23 | 49. 11.80 | 50. 0.62 | 51. 0.92 | 52. 2.91 | 53. 1.71 |
54. Dissipative | 55. 24 | 56. 7.93 | 57. 1.29 | 58. 1.22 | 59. 3.66 | 60. 2.36 |
61. Dissipative | 62. 25 | 63. 11.66 | 64. 1.20 | 65. 1.16 | 66. 2.87 | 67. 2.27 |
68. Accretion | 69. 26 | 70. 10.31 | 71. 1.12 | 72. 1.00 | 73. 4.22 | 74. 3.12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte Nemes, D.; Fabián Criado-Sudau, F.; Nicolás Gallo, M. Beach Morphodynamic Response to a Submerged Reef. Water 2019, 11, 340. https://doi.org/10.3390/w11020340
Duarte Nemes D, Fabián Criado-Sudau F, Nicolás Gallo M. Beach Morphodynamic Response to a Submerged Reef. Water. 2019; 11(2):340. https://doi.org/10.3390/w11020340
Chicago/Turabian StyleDuarte Nemes, Douglas, Francisco Fabián Criado-Sudau, and Marcos Nicolás Gallo. 2019. "Beach Morphodynamic Response to a Submerged Reef" Water 11, no. 2: 340. https://doi.org/10.3390/w11020340
APA StyleDuarte Nemes, D., Fabián Criado-Sudau, F., & Nicolás Gallo, M. (2019). Beach Morphodynamic Response to a Submerged Reef. Water, 11(2), 340. https://doi.org/10.3390/w11020340