Fluorescence Excitation-Emission Spectroscopy: An Analytical Technique to Monitor Drugs of Addiction in Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Analytical Methods
2.3. Fluorescence Excitation-Emission Matrix Data Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Fluorescence-EEM
3.2. Fluorescence-EEM Removal during Treatment Processes
3.3. Targeted Drugs Removal during Wastewater Treatment
3.4. Relationship between DOA Removal and F-EEM Regions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Castiglioni, S.; Zuccato, E.; Chiabrando, C.; Fanelli, R.; Bagnati, R. Mass spectrometric analysis of illicit drugs in wastewater and surface water. Mass Spectrom. Rev. 2008, 27, 378–394. [Google Scholar] [CrossRef] [PubMed]
- Castrignanò, E.; Yang, Z.; Bade, R.; Baz-Lomba, J.A.; Castiglioni, S.; Causanilles, A.; Covaci, A.; Gracia-Lor, E.; Hernandez, F.; Kinyua, J.; et al. Enantiomeric profiling of chiral illicit drugs in a pan-european study. Water Res. 2018, 130, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-G.; Zheng, Q.-D.; Wang, X.-P.; Du, J.; Tian, C.-G.; Wang, Z.; Ge, L.-K. Illicit drugs and their metabolites in 36 rivers that drain into the bohai sea and north yellow sea, north china. Environ. Sci. Pollut. Res. 2016, 23, 16495–16503. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.K.; Short, M.D.; Aryal, R.; Gerber, C.; van den Akker, B.; Saint, C.P. Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment. Water Res. 2017, 124, 713–727. [Google Scholar] [CrossRef] [PubMed]
- Gruchlik, Y.; Linge, K.; Joll, C. Removal of organic micropollutants in waste stabilisation ponds: A review. J. Environ. Manag. 2018, 206, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Richmond, E.K.; Rosi, E.J.; Walters, D.M.; Fick, J.; Hamilton, S.K.; Brodin, T.; Sundelin, A.; Grace, M.R. A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nat. Commun. 2018, 9, 4491. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-T.; Chen, S.-Y.; Xu, Z.-X.; Li, Y.; Shuang, C.-D.; Li, A.-M. Characterization of dissolved organic matter in municipal wastewater using fluorescence parafac analysis and chromatography multi-excitation/emission scan: A comparative study. Environ. Sci. Technol. 2014, 48, 2603–2609. [Google Scholar] [CrossRef] [PubMed]
- Sgroi, M.; Roccaro, P.; Korshin, G.V.; Greco, V.; Sciuto, S.; Anumol, T.; Snyder, S.A.; Vagliasindi, F.G.A. Use of fluorescence eem to monitor the removal of emerging contaminants in full scale wastewater treatment plants. J. Hazard. Mater. 2017, 323, 367–376. [Google Scholar] [CrossRef]
- Aryal, R.; Yadav, M.; Hussain, S.; Beecham, S.; Diprose, D. Tracking changes in fluorescent organic composition in leachates using excitation emission matrix-parallel factor analysis. Process Saf. Environ. Prot. 2016, 104, 507–516. [Google Scholar] [CrossRef]
- Aryal, R.; Lee, B.-K.; Beecham, S.; Kandasamy, J.; Aryal, N.; Parajuli, K. Characterisation of road dust organic matter as a function of particle size: A parafac approach. Waterairsoil Pollut. 2015, 226, 1–10. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Graeber, D.; Bro, R. Fluorescence spectroscopy and multi-way techniques. Parafac. Anal. Methods 2013, 5, 6557–6566. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.K.; Short, M.D.; Gerber, C.; van den Akker, B.; Aryal, R.; Saint, C.P. Occurrence, removal and environmental risk of markers of five drugs of abuse in urban wastewater systems in south australia. Environ. Sci. Pollut. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Irvine, R.J.; Kostakis, C.; Felgate, P.D.; Jaehne, E.J.; Chen, C.; White, J.M. Population drug use in australia: A wastewater analysis. Forensic Sci. Int. 2011, 210, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Andersson, C.A.; Bro, R. The n-way toolbox for matlab. Chemom. Intell. Lab. Syst. 2000, 52, 1–4. [Google Scholar] [CrossRef]
- Yamashita, Y.; Jaffé, R.; Maie, N.; Tanoue, E. Assessing the dynamics of dissolved organic matter (dom) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (eem-parafac). Limnol. Oceanogr. 2008, 53, 1900–1908. [Google Scholar] [CrossRef]
- Butturini, A.; Ejarque, E. Dissolved organic matter fluorescence a finite mixture approach to deconvolve excitation-emission matrices. Biogeosciences 2013, 10, 5875–5887. [Google Scholar] [CrossRef]
- Santos, C.H.; Nicolodelli, G.; Romano, R.A.; Tadini, A.M.; Villas-Boas, P.R.; Montes, C.R.; Mounier, S.; Milori, D.M. Structure of humic substances from some regions of the amazon assessed coupling 3d fluorescence spectroscopy and cp/parafac. J. Braz. Chem. Soc. 2015, 26, 1136–1142. [Google Scholar] [CrossRef]
- Fukuzaki, K.; Imai, I.; Fukushima, K.; Ishii, K.-I.; Sawayama, S.; Yoshioka, T. Fluorescent characteristics of dissolved organic matter produced by bloom-forming coastal phytoplankton. J. Plankton Res. 2014, 36, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Hudson, N.; Baker, A.; Reynolds, D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—A review. River Res. Appl. 2007, 23, 631–649. [Google Scholar] [CrossRef]
- Wei, J.; Han, L.; Song, J.; Chen, M. Evaluation of the interactions between water extractable soil organic matter and metal cations (cu(ii), eu(iii)) using excitation-emission matrix combined with parallel factor analysis. Int. J. Mol. Sci. 2015, 16, 14464–14476. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.R.; Hambly, A.; Singh, S.; Henderson, R.K.; Baker, A.; Stuetz, R.; Khan, S.J. Organic matter fluorescence in municipal water recycling schemes: Toward a unified parafac model. Environ. Sci. Technol. 2011, 45, 2909–2916. [Google Scholar] [CrossRef] [PubMed]
- Mostofa, K.M.; Yoshioka, T.; Konohira, E.; Tanoue, E.; Hayakawa, K.; Takahashi, M. Three-dimensional fluorescence as a tool for investigating the dynamics of dissolved organic matter in the lake biwa watershed. Limnology 2005, 6, 101–115. [Google Scholar] [CrossRef]
- Ghervase, L.; Ioja, C.; Carstea, E.; Niculita, L.; Savastru, D.; Pavelescu, G.; Vanau, G. Evaluation of lentic ecosystems from bucharest city. Int. J. Energy Environ. 2011, 5, 183–192. [Google Scholar]
- Goslan, E.H.; Voros, S.; Banks, J.; Wilson, D.; Hillis, P.; Campbell, A.T.; Parsons, S.A. A model for predicting dissolved organic carbon distribution in a reservoir water using fluorescence spectroscopy. Water Res. 2004, 38, 783–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coble, P.G. Characterization of marine and terrestrial dom in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Mostofa, K.M.G.; Wu, F.; Liu, C.-Q.; Fang, W.L.; Yuan, J.; Ying, W.L.; Wen, L.; Yi, M. Characterization of nanming river (southwestern china) sewerage-impacted pollution using an excitation-emission matrix and parafac. Limnology 2010, 11, 217–231. [Google Scholar] [CrossRef]
- Watanabe, A.; Moroi, K.; Sato, H.; Tsutsuki, K.; Maie, N.; Melling, L.; Jaffé, R. Contributions of humic substances to the dissolved organic carbon pool in wetlands from different climates. Chemosphere 2012, 88, 1265–1268. [Google Scholar] [CrossRef] [PubMed]
- Westgate, P.J. Characterization of proteins in effluents from three wastewater treatment plants that discharge to the connecticut river. Environ. Water Resour. Eng. Masters Proj. 2009, 42. [Google Scholar] [CrossRef]
- Westgate, P.J.; Park, C. Evaluation of proteins and organic nitrogen in wastewater treatment effluents. Environ. Sci. Technol. 2010, 44, 5352–5357. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Qu, F.; Sun, L.; Liang, H.; Han, Z.; Chang, H.; Shao, S.; Li, G. Relationship between soluble microbial products (smp) and effluent organic matter (efom): Characterized by fluorescence excitation emission matrix coupled with parallel factor analysis. Chemosphere 2015, 121, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ. Int. 2010, 36, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. Pubchem substance and compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef] [PubMed]
- Borges, C.R. Roles of Drug Basicity, Melanin binding, and Cellular Transport in Drug Incorporation into Hair; Dept. of Pharmacology and Toxicology, University of Utah: Salt Lake City, UT, USA, 2001. [Google Scholar]
- Huestis, M.A.; Cone, E.J. Methamphetamine disposition in oral fluid, plasma, and urine. Ann. N. Y. Acad. Sci. 2007, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.S.; Christopher, M.M.; Mehta, P.; Kedar, A.; Gross, S.; Derendorf, H. Increased erythrocyte and protein binding of codeine in patients with sickle cell disease. J. Pharm. Sci. 1993, 82, 1112–1117. [Google Scholar] [CrossRef] [PubMed]
Components | Peak Identified * | Maximum Ex/Em (nm) | Existing substances in the samples | Previously reported by References |
---|---|---|---|---|
C1 | A * | 250/460 | Humic-like: Terrestrial | [16,17,18] |
C2 | T * | 275/340 | Protein-like: Tryptophan | [19,20,21] |
C3 | C * | 345/420–440 | Wastewater: Fulvic acid-like | [22,23] |
C4 | M * | 310/400 | Humic-like: Microbial Carboxylic acid | [24,25] |
F-EEM Indexes | P2 | FA | SMP | HA | C1 | C2 | C3 | C4 |
---|---|---|---|---|---|---|---|---|
P1 | 0.544 ** | 0.262 | 0.060 | −0.146 | −0.326 * | −0.020 | −0.469 ** | −0.212 |
P2 | - | 0.010 | −0.019 | −0.101 | 0.090 | −0.034 | −0.239 | 0.130 |
FA | - | - | 0.133 | 0.258 | 0.088 | −0.059 | 0.153 | −0.011 |
SMP | - | - | - | −0.035 | −0.204 | −0.033 | −0.083 | −0.098 |
HA | - | - | - | - | 0.081 | 0.199 | −0.217 | −0.053 |
C1 | - | - | - | - | - | 0.315 * | 0.749 ** | 0.597 ** |
C2 | - | - | - | - | - | - | 0.402 * | 0.611 ** |
C3 | - | - | - | - | - | - | - | 0.609 ** |
Compounds | F-EEM correlated regions | Pearson coefficient (r) | p-value |
---|---|---|---|
Benzoylecgonine | P1 | −0.407 | 0.009 ** |
P2 | −0.329 | 0.038 * | |
Methamphetamine | P1 | −0.324 | 0.041 * |
P2 | −0.436 | 0.005 ** | |
SMP | −0.401 | 0.010 * | |
HA | 0.329 | 0.038 * | |
Codeine | C2 | 0.433 | 0.005 ** |
FA | −0.369 | 0.019 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, M.K.; Aryal, R.; Short, M.D.; Saint, C.P. Fluorescence Excitation-Emission Spectroscopy: An Analytical Technique to Monitor Drugs of Addiction in Wastewater. Water 2019, 11, 377. https://doi.org/10.3390/w11020377
Yadav MK, Aryal R, Short MD, Saint CP. Fluorescence Excitation-Emission Spectroscopy: An Analytical Technique to Monitor Drugs of Addiction in Wastewater. Water. 2019; 11(2):377. https://doi.org/10.3390/w11020377
Chicago/Turabian StyleYadav, Meena K., Rupak Aryal, Michael D. Short, and Christopher P. Saint. 2019. "Fluorescence Excitation-Emission Spectroscopy: An Analytical Technique to Monitor Drugs of Addiction in Wastewater" Water 11, no. 2: 377. https://doi.org/10.3390/w11020377
APA StyleYadav, M. K., Aryal, R., Short, M. D., & Saint, C. P. (2019). Fluorescence Excitation-Emission Spectroscopy: An Analytical Technique to Monitor Drugs of Addiction in Wastewater. Water, 11(2), 377. https://doi.org/10.3390/w11020377