Recent Precipitation Trends and Floods in the Colombian Andes
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data Quality Control and Homogeneity
2.3. Extreme Precipitation Indices
2.4. Regional Anomalies of Extreme Precipitation, ENSO and Flood Events
3. Results and Discussion
3.1. Annual and Seasonal Extreme Precipitation Trends
3.2. Regional Anomalies of Extreme Precipitation, ENSO and Flood Events
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Peak Stage Date | Flow (m3/s) | Flooded Area (km2) | Corresponding La Niña 1 | |||||
---|---|---|---|---|---|---|---|---|
(Day/Month/Year) | Start Date | End Date | ||||||
18 | November | 1970 | 1117 | 367.7 | June | 1970 | December | 1971 |
5 | April | 1971 | 1222 | 663.8 | June | 1970 | December | 1971 |
24 | March | 1974 | 1219 | 419.1 | May | 1973 | June | 1974 |
30 | December | 1975 | 1317 | 431.2 | September | 1974 | February | 1975 |
18 | April | 1982 2 | 972 | 110.0 | -- | |||
8 | November | 1984 | 1214 | 353.9 | September | 1984 | May | 1985 |
8 | December | 1988 | 1148 | 128.8 | April | 1988 | April | 1989 |
30 | January | 1997 2 | 993 | 54.0 | -- | |||
2 | March | 1999 | 1166 | 133.7 | June | 1998 | February | 2001 |
30 | November | 2008 | 1055 | 82.9 | July | 2007 | May | 2008 |
4 | December | 2010 | 1202 | 440.2 | July | 2010 | March | 2011 |
28 | April | 2011 3 | 1188 | 393.2 | July | 2010 | March | 2011 |
16 | December | 1205 | July | 2011 | January | 2012 |
References
- Smyth, C.G.; Royle, S.A. Urban landslide hazards: Incidence and causative factors in Niteroi, Rio de Janeiro state, Brazil. Appl. Geogr. 2000, 20, 95–117. [Google Scholar] [CrossRef]
- Poveda, G. La Hidroclimatología de Colombia: Una Síntesis Desde la Escala Inter-Decadal Hasta la Escala Diurna. Rev. la Acad. Colomb. Ciencias 2004, XXVIII, 201–222. [Google Scholar]
- Poveda, G.; Álvarez, D.M.; Rueda, Ó.A. Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim. Dyn. 2011, 36, 2233–2249. [Google Scholar] [CrossRef]
- World Bank. El cambio climático y los fenómenos de El Niño y La Niña. In Análisis de la gestión del riesgo de desastres en Colombia: Un aporte para la construcción de políticas públicas; Campos, G., Holm-Nielsen, N., Díaz, C., Rubiano, D., Costa, C., Ramírez, F., Dickson, E., Eds.; World Bank: Bogotá, Colombia, 2012; Volume 2, pp. 50–51. [Google Scholar]
- Hoyos, I.; Baquero-Bernal, A.; Jacob, D.; Rodríguez, B.A. Variability of extreme events in the Colombian Pacific and Caribbean catchment basins. Clim. Dyn. 2013, 40, 1985–2003. [Google Scholar] [CrossRef]
- Enciso, A.; Carvajal, Y.; Sandoval, M. Hydrological analysis of historical floods in the upper valley of Cauca river (in Spanish). Ing. Y Compet. 2016, 57, 46–57. [Google Scholar]
- Ragettli, S.; Immerzeel, W.W.; Pellicciotti, F. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. Proc. Natl. Acad. Sci. USA 2016, 113, 9222–9227. [Google Scholar] [CrossRef] [PubMed]
- Campozano, L.; Vázquez-Patiño, A.; Tenelanda, D.; Feyen, J.; Samaniego, E.; Sánchez, E. Evaluating extreme climate indices from CMIP3&5 global climate models and reanalysis data sets: a case study for present climate in the Andes of Ecuador. Int. J. Climatol. 2017, 37, 363–379. [Google Scholar] [Green Version]
- Sedano, K.; Carvajal, Y.; Ávila, Á. Analysis of the aspects which increase the risk of floods in Colombia (in Spanish). Luna Azul 2013, 37, 219–238. [Google Scholar]
- Hoyos, N.; Escobar, J.; Restrepo, J.; Arango, A.; Ortiz, J. Impact of the 2010-2011 La Niña phenomenon in Colombia, South America: The human toll of an extreme weather event. Appl. Geogr. 2013, 39, 16–25. [Google Scholar] [CrossRef]
- Skansi, M.; Brunet, M.; Sigró, J.; Aguilar, E.; Arevalo, G.; Bentancur, O.; Castellón, G.; Correa, A.; Jácome, H.; Malheiros, R.; et al. Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob. Planet. Change 2013, 100, 295–307. [Google Scholar] [CrossRef]
- Mallakpour, I.; Villarini, G. The changing nature of flooding across the central United States. Nat. Clim. Chang. 2015, 5, 250–254. [Google Scholar] [CrossRef]
- Ávila, A.; Justino, F.; Wilson, A.; Bromwich, D.; Amorim, M. Recent precipitation trends, flash floods and landslides in southern Brazil. Environ. Res. Lett. 2016, 11, 1–13. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Debortoli, N.; Camarinha, P.; Marengo, J.; Rodrigues, R. An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change. Nat. Hazards 2017, 86, 557–582. [Google Scholar] [CrossRef]
- Marengo, J.; Valverde, M.; Obregon, G. Observed and projected changes in rainfall extremes in the Metropolitan Area of São Paulo. Clim. Res. 2013, 57, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; He, B.; Takara, K.; Luo, P.; Hu, M.; Alias, N.E.; Nover, D. Changes of precipitation amounts and extremes over Japan between 1901 and 2012 and their connection to climate indices. Clim. Dyn. 2015, 45, 2273–2292. [Google Scholar] [CrossRef]
- Wang, R.; Li, C. Spatiotemporal analysis of precipitation trends during 1961–2010 in Hubei province, central China. Theor. Appl. Climatol. 2015, 124, 385–389. [Google Scholar] [CrossRef]
- Tanoue, M.; Hirabayashi, Y.; Ikeuchi, H. Global-scale river flood vulnerability in the last 50 years. Sci. Rep. 2016, 6, 36021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadwick, R.; Good, P.; Martin, G.; Rowell, D. Large rainfall changes consistently projected over substantial areas of tropical land. Nat. Clim. Chang. 2016, 6, 177–181. [Google Scholar] [CrossRef]
- Fischer, E.M.; Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Chang. 2016, 6, 986–991. [Google Scholar] [CrossRef]
- Zhou, X.; Bai, Z.; Yang, Y. Linking trends in urban extreme rainfall to urban flooding in China. Int. J. Climatol. 2017, 37, 4586–4593. [Google Scholar] [CrossRef]
- Cardona, F.; Ávila, Á.; Carvajal, Y.; Jiménez, H. Trends into rainfall time series of two Andes basins of Valle del Cauca (in Spanish). Tecnológicas 2014, 17, 85–95. [Google Scholar]
- Armenteras, D.; Rodríguez, N.; Retana, J.; Morales, M. Understanding deforestation in montane and lowland forests of the Colombian Andes. Reg. Environ. Chang. 2011, 11, 693–705. [Google Scholar] [CrossRef]
- Restrepo, J.; Kettner, A.; Syvitski, J. Recent deforestation causes rapid increase in river sediment load in the Colombian Andes. Antrhropocene 2015, 10, 13–28. [Google Scholar] [CrossRef]
- Aguilar, E.; Peterson, T.C.; Obando, P.R.; Frutos, R.; Retana, J.A.; Solera, M.; Soley, J.; García, I.G.; Araujo, R.M.; Santos, A.R.; et al. Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res. 2005, 110, 1–15. [Google Scholar] [CrossRef]
- Puertas, O.; Carvajal, Y.; Quintero, M. Study of monthly rainfall trends in the upper and middle Cauca River Basin, Colombia. Dyna 2011, 169, 112–120. [Google Scholar]
- El Río Cauca en su valle alto; CVC: Santiago de Cali, Colombia, 2007; ISBN 9789588332109.
- Pérez, M.A.; Peña, M.R.; Alvarez, P. Agro Industria Cañera y uso del agua: análisis crítico en el contexto de la política de agrocombustibles en Colombia. Ambient. Soc. 2011, XIV, 153–178. [Google Scholar]
- Ávila, Á.; Carvajal, Y. Agrofuels and Food Sovereignty in Colombia (in Spanish). Cuad. Geogr. 2015, 24, 43–60. [Google Scholar]
- Berrío, J.C.; Hooghiemstra, H.; Marchant, R.; Rangel, O. Late-glacial and Holocene history of the dry forest area in the south. J. Quat. Sci. 2002, 17, 667–682. [Google Scholar] [CrossRef]
- Poveda, G.; Waylen, P.R.; Pulwarty, R.S. Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 234, 3–27. [Google Scholar] [CrossRef]
- Jaramillo, L.; Poveda, G.; Mejía, J.F. Mesoscale Convective Systems and other Precipitation Features over the Tropical Americas and Surrounding Seas as seen by TRMM. Int. J. Climatol. 2000, 37, 380–397. [Google Scholar] [CrossRef]
- Poveda, G.; Mesa, O.J. Feedbacks between hydrological processes in tropical South America and large-scale ocean-atmospheric phenomena. J. Clim. 1997, 10, 2690–2702. [Google Scholar] [CrossRef]
- Poveda, G.; Salazar, L.F. Annual and interannual (ENSO) variability of spatial scaling properties of a vegetation index (NDVI) in Amazonia. Remote Sens. Environ. 2004, 93, 391–401. [Google Scholar] [CrossRef]
- Poveda, G.; Mesa, O.J.; Salazar, L.F.; Arias, P.A.; Moreno, H.A.; Vieira, S.C.; Agudelo, P.A.; Toro, V.G.; Alvarez, J.F. The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Mon. Weather Rev. 2005, 133, 228–241. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y. RHtestV3 User Manual, Climate Research Division, Atmospheric Science and Technology Directorate; Science and Technology Branch, Environment Canada: Downsvies, ON, Canada, 2009; p. 29. [Google Scholar]
- Zhang, X.; Yang, F. RClimDex_ User Manual; Climate Research Branch Environment Canada: Toronto, ON, Canada, 2004; p. 22. [Google Scholar]
- Zhang, X.; Alexander, L.; Hegerl, G.; Jones, P.; Tank, A.; Peterson, T.; Trewin, B.; Zwiers, F. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Santos, M.; Fragoso, M.; Santos, J. Regionalization and susceptibility assessment to daily precipitation extremes in mainland Portugal. Appl. Geogr. 2017, 86, 128–138. [Google Scholar] [CrossRef]
- Wu, C.; Huang, G. Changes in heavy precipitation and floods in the upstream of the Beijiang River basin, South China. Int. J. Climatol. 2015, 35, 2978–2992. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.; Zwiers, W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1990; p. 160. ISBN 0852641990. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Liu, M.; Xu, X.; Sun, A.; Wang, K.; Liu, W.; Zhang, X. Is southwestern China experiencing more frequent precipitation extremes? Environ. Res. Lett. 2014, 9, 1–15. [Google Scholar] [CrossRef]
- Sen, P. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- New, M.; Hewitson, B.; Stephenson, D.; Tsiga, A.; Kruger, A.; Manhique, A.; Gomez, B.; Coelho, C.; Masisi, D.; Kululanga, E.; et al. Evidence of trends in daily climate extremes over southern and west Africa. J. Geophys. Res. Atmos. 2006, 111, 1–11. [Google Scholar] [CrossRef]
- Poveda, G.; Velez, J.; Mesa, O.; Hoyos, C.; Mejía, F.; Barco, O.; Correa, P. Influencia de fenómenos macroclimáticos sobre el ciclo anual de la hidrología colombiana: cuantificación lineal, no lineal y percentiles probabilísticos. Meteorol. Colomb. 2002, 6, 121–130. [Google Scholar]
- Ávila, Á.; Carvajal, Y.; Gutiérrez, S. El Niño and La Niña analysis influence in the monthly water supply at Cali River basin (in Spanish). Tecnura 2014, 18, 120–133. [Google Scholar]
- Morán-Tejeda, E.; Bazo, J.; López-Moreno, J.I.; Aguilar, E.; Azorín-Molina, C.; Sanchez-Lorenzo, A.; Martínez, R.; Nieto, J.J.; Mejía, R.; Martín-Hernández, N.; et al. Climate trends and variability in Ecuador (1966-2011). Int. J. Climatol. 2015, 11, 3839–3855. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.; Aguilar, E.; Martínez, R.; Martín-Hernández, N.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; El Kenawy, A.; Tomás-Burguera, M.; Moran-Tejeda, E.; López-Moreno, J.I.; et al. The complex influence of ENSO on droughts in Ecuador. Clim. Dyn. 2016, 48, 405–427. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, T.; Rutgersson, A.; Alfaro, E.; Amador, J.; Claremar, B. Interannual variability of the midsummer drought in Central America and the connection with sea surface temperatures. Adv. Geosci. 2016, 42, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Grupo de Hi; dráulica Fluvial y Marítima. Descripción y análisis de las inundaciones históricas. In Análisis hidráulico de las crecientes históricas del Río Cauca; Ramírez, C., García, J., Bocanegra, R., Ayala, C., Ojeda, Arias., Hurtado, E., Potes, Y., Eds.; Universidad del Valle: Cali, Colombia, 2013; Volume 1, pp. 17–96. [Google Scholar]
- Celleri, R.; Willems, P.; Buytaert, W.; Feyen, J. Space–time rainfall variability in the Paute Basin, Ecuadorian Andes. Hydrol. Process. 2007, 3327, 3316–3327. [Google Scholar] [CrossRef]
- Casimiro, W.; Labat, D.; Ronchail, J.; Espinoza, J.; Guyot, J. Trends in rainfall and temperature in the Peruvian Amazon—Andes basin over the last 40 years (1965–2007). Hydrol. Process. 2012, 27, 2944–2957. [Google Scholar] [CrossRef]
- Cuartas, D.; Caicedo, D.; Ortega, D.; Cardona, F.; Carvajal, Y.; Mendez, F. Spatial and temporal trends of extreme climate events in geographical valley of Cauca River (in Spanish). Actual. Divulg. Científica 2017, 20, 267–278. [Google Scholar]
- Setiawan, A.; Lee, W.; Rhee, J. Spatio-temporal characteristics of Indonesian drought related to El Niño events and its predictability using the multi-model ensemble. Int. J. Climatol. 2017, 37, 4700–4719. [Google Scholar] [CrossRef]
- Munoz, S.; Dee, S. El Niño increases the risk of lower Mississippi River flooding. Sci. Rep. 2017, 7, 1772. [Google Scholar] [CrossRef] [PubMed]
- Ndehedehe, C.E.; Awange, J.L.; Agutu, N.O.; Okwuashi, O. Changes in hydro-meteorological conditions over tropical West Africa (1980–2015) and links to global climate. Glob. Planet. Change 2018, 162, 321–341. [Google Scholar] [CrossRef]
- Welhouse, L.J.; Lazzara, M.A.; Keller, L.M.; Tripoli, G.J.; Hitchman, M.H. Composite analysis of the effects of ENSO events on Antarctica. J. Clim. 2016, 29, 1797–1808. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wood, E.; New, M.; Hulme, M.; Jones, P.; Sheffield, J.; Goteti, G.; Wood, E.; Chaney, N.; et al. Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef]
- Hirahara, S.; Ishii, M.; Fukuda, Y. Centennial-Scale Sea Surface Temperature Analysis and Its Uncertainty. J. Clim. 2014, 28, 57–75. [Google Scholar] [CrossRef]
- Fan, Y.; van den Dool, H. Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res. D Atmos. 2004, 109, 1–8. [Google Scholar] [CrossRef]
- Armenteras, D.; Retana, J.; Molowny, R.; Roman, R.; Gonzalez, F.; Morales, M. Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agric. For. Meteorol. 2011, 151, 279–289. [Google Scholar] [CrossRef]
- Córdoba-Machado, S.; Palomino-Lemus, R.; Gámiz-Fortis, S.R.; Castro-Díez, Y.; Esteban-Parra, M.J. Seasonal streamflow prediction in Colombia using atmospheric and oceanic patterns. J. Hydrol. 2016, 538, 1–12. [Google Scholar] [CrossRef]
Index | Indicator | Definition | Unit |
---|---|---|---|
PRCPTOT | Annual total wet-day precipitation | Total wet-day precipitation (RR * ≥ 1 mm) | mm |
RX1day | Maximum 1-day precipitation amount | Highest 1-day precipitation amount | mm |
RX5day | Maximum 5-day precipitation amount | Highest 5-day precipitation amount in consecutive days | mm |
R95p | Very wet days | Precipitation due to very wet days (>95th percentile) | mm |
NW | Number of wet days | Number of days for precipitation ≥ 1 mm | days |
R30mm | Number of very heavy precipitation days | Number of days for precipitation ≥ 30 mm | days |
CWD | Consecutive wet days | Maximum length of wet spell (RR ≥ 1 mm) | days |
CDD | Consecutive dry days | Maximum length of dry spell (RR < 1 mm) | days |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila, Á.; Guerrero, F.C.; Escobar, Y.C.; Justino, F. Recent Precipitation Trends and Floods in the Colombian Andes. Water 2019, 11, 379. https://doi.org/10.3390/w11020379
Ávila Á, Guerrero FC, Escobar YC, Justino F. Recent Precipitation Trends and Floods in the Colombian Andes. Water. 2019; 11(2):379. https://doi.org/10.3390/w11020379
Chicago/Turabian StyleÁvila, Álvaro, Faisury Cardona Guerrero, Yesid Carvajal Escobar, and Flávio Justino. 2019. "Recent Precipitation Trends and Floods in the Colombian Andes" Water 11, no. 2: 379. https://doi.org/10.3390/w11020379
APA StyleÁvila, Á., Guerrero, F. C., Escobar, Y. C., & Justino, F. (2019). Recent Precipitation Trends and Floods in the Colombian Andes. Water, 11(2), 379. https://doi.org/10.3390/w11020379