Iron Isotopic Composition of Suspended Particulate Matter in Hongfeng Lake
Abstract
:1. Introduction
2. Study Site, Sampling, and Analytical Details
2.1. Study Site
2.2. Sampling
2.3. Iron Isotope Analysis
2.3.1. Sample Dissolution
2.3.2. Chemical Purification
2.3.3. Mass Spectrometry
2.4. Chlorophyll-a as an Index for the Divided Lake Nutrition Level
3. Results
3.1. Basic Water Chemical Parameters in the Lake and Its Tributaries in Hongfeng Lake
3.2. Dissolved Fe, Mn, and Al Contents in Hongfeng Lake and Its Tributaries
3.3. Fe, Mn, and Al Contents and δ56Fe Values of SPM in Hongfeng Lake and Its Tributaries
3.3.1. Riverine SPM
3.3.2. Lake SPM
4. Discussion
4.1. Hydrochemical Stratification of Hongfeng Lake
4.2. Source Control of Iron Isotopes in Hongfeng Lake
4.3. Algae Bloom and Depth-Related Variations on the Iron Isotope Composition of SPM in Hongfeng Lake
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Boyd, P.W.; Ellwood, M.J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 2010, 3, 675–682. [Google Scholar] [CrossRef] [Green Version]
- Hopkinson, B.M.; Morel, F.M. The role of siderophores in iron acquisition by photosynthetic marine microorganisms. Biometals 2009, 22, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Imai, A.; Matsushige, K.; Fukushima, T. Effect of iron complexation with dissolved organic matter on the growth of cyanobacteria in a eutrophic lake. Aquat. Microb. Ecol. 2006, 44, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Bruland, K.W.; Donat, J.; Hutchins, A. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limno. Oceangr. 1991, 36, 1555–1577. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.Y.; Kuwabara, J.S.; Pasilis, S.P. Phosphate and iron limitation of phytoplankton biomass in Lake Tahoe. Can. J. Fish. Aquat. Sci. 1992, 49, 1206–1215. [Google Scholar] [CrossRef]
- Davison, W. Iron and manganese in lakes. Earth Sci. Rev. 1993, 34, 119–163. [Google Scholar] [CrossRef]
- Hamilton, T.J.; Davison, W.; Morfett, K. The biogeochemical cycling of Zn, Cu, Fe, Mn, and dissolved organic C in a seasonally anoxic lake. Limnol. Oceangr. 1996, 41, 408–418. [Google Scholar] [CrossRef] [Green Version]
- Staubwasser, M.; Von Blanckenburg, F.; Schoenberg, R. Iron isotopes in the early marine diagenetic iron cycle. Geology 2006, 34, 629–632. [Google Scholar] [CrossRef]
- Fehr, M.A.; Andersson, P.S.; Hålenius, U.; Mörth, C.M. Iron isotope variations in Holocene sediments of the Gotland Deep, Baltic Sea. Geochim. Cosmochim. Acta 2008, 72, 807–826. [Google Scholar] [CrossRef]
- Poitrasson, F.; Viers, J.; Martin, F.; Braun, J.J. Limited iron isotope variations in recent lateritic soils from Nsimi, Cameroon: Implications for the global Fe geochemical cycle. Chem. Geol. 2008, 253, 54–63. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, H.; Zhu, X.; Tang, S.; Tang, Y. Iron isotope variations in spinel peridotite xenoliths from North China Craton:implications for mantle metasomatism. Contrib. Mineral. Petrol. 2009, 160, 1–14. [Google Scholar] [CrossRef]
- Severmann, S.; Mcmanus, J.; Berelson, W.M.; Hammond, D.E. The continental shelf benthic iron flux and its isotope composition. Geochim. Cosmochim. Acta 2010, 74, 3984–4004. [Google Scholar] [CrossRef]
- Severmann, S.; Lyons, T.W.; Anbar, A.; McManus, J.; Gordon, G. Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans. Geology 2015, 36, 487–490. [Google Scholar] [CrossRef]
- Dauphas, N.; John, S.G.; Rouxel, O. Iron Isotope Systematics. Rev. Minal. Geochem. 2017, 82, 415–510. [Google Scholar] [CrossRef]
- Teutsch, N.; Schmid, M.; Müller, B.; Halliday, A.N.; Bürgmann, H.; Wehrli, B. Large iron isotope fractionation at the oxic–anoxic boundary in Lake Nyos. Earth Planet. Sci. Lett. 2009, 285, 52–60. [Google Scholar] [CrossRef]
- Poitrasson, F.; Vieira, L.C.; Seyler, P.; dos Santos Pinheiro, G.M.; Mulholland, D.S.; Bonnet, M.P.; Martinez, J.-M.; Lima, B.A.; Boaventura, R.; Chmeleff, J.; et al. Iron isotope composition of the bulk waters and sediments from the Amazon River Basin. Chem. Geol. 2014, 377, 1–11. [Google Scholar] [CrossRef]
- Fantle, M.S.; Depaolo, D.J. Iron isotopic fractionation during continental weathering. Earth Planet. Sci. Lett. 2004, 228, 547–562. [Google Scholar] [CrossRef] [Green Version]
- Bergquist, B.A.; Boyle, E.A. Dissolved iron in the tropical and subtropical Atlantic ocean. Glob. Biogeochem. Cycles 2006, 20, 1–14. [Google Scholar] [CrossRef]
- Ingri, J.; Malinovsky, D.; Rodushkin, I.; Baxter, D.C.; Widerlund, A.; Andersson, P.; Gustafsson, Ö.; Forsling, W.; Öhlander, B. Iron isotope fractionation in river colloidal matter. Earth Planet. Sci. Lett. 2006, 245, 792–798. [Google Scholar] [CrossRef]
- Escoube, R.; Rouxel, O.J.; Sholkovitz, E.; Donard, O.F.L. Iron isotope systematics in estuaries: The case of North River, Massachusetts (USA). Geochim. Cosmochim. Acta 2009, 73, 4045–4059. [Google Scholar] [CrossRef] [Green Version]
- Ilina, S.M.; Poitrasson, F.; Lapitskiy, S.A.; Alekhin, Y.V.; Viers, J.; Pokrovsky, O.S. Extreme iron isotope fractionation between colloids and particles of;boreal and temperate organic-rich waters. Geochim. Cosmochim. Acta 2013, 101, 96–111. [Google Scholar] [CrossRef]
- Zhang, R.; John, S.G.; Zhang, J.; Ren, J.; Wu, Y.; Zhu, Z.; Liu, S.; Zhu, X.; Marsay, C.M.; Wenger, F. Transport and reaction of iron and iron stable isotopes in glacial meltwaters on Svalbard near Kongsfjorden: From rivers to estuary to ocean. Earth Planet. Sci. Lett. 2015, 424, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.B.; Busigny, V.; Gaillardet, J.; Louvat, P.; Wang, Y.N. Iron isotopes in the Seine River (France): Natural versus anthropogenic sources. Geochim. Cosmochim. Acta 2014, 128, 128–143. [Google Scholar] [CrossRef]
- Song, L.; Liu, C.Q.; Wang, Z.L.; Zhu, X.; Teng, Y.; Liang, L.; Tang, S.; Li, J. Iron isotope fractionation during biogeochemical cycle: Information from suspended particulate matter (SPM) in Aha Lake and its tributaries, Guizhou, China. Chem. Geol. 2011, 280, 170–179. [Google Scholar] [CrossRef]
- Teutsch, N.; Gunten, U.V.; Porcelli, D.; Cirpka, O.A.; Halliday, A.N. Adsorption as a cause for iron isotope fractionation in reduced groundwater. Geochim. Cosmochim. Acta 2005, 69, 4175–4185. [Google Scholar] [CrossRef]
- Dos Santos Pinheiro, G.M.; Poitrasson, F.; Sondag, F.; Vieira, L.C.; Pimentel, M.M. Iron isotope composition of the suspended matter along depth and lateral profiles in the Amazon River and its tributaries. J. N. Am. Earth Sci. 2013, 44, 35–44. [Google Scholar] [CrossRef]
- Klar, J.K.; Schlosser, C.; Milton, J.A.; Woodward, E.M.S.; Lacan, F.; Parkinson, I.J.; Achterberg, E.P.; James, R.H. Sources of dissolved iron to oxygen minimum zone waters on the Senegalese continental margin in the tropical North Atlantic Ocean: Insights from iron isotopes. Geochim. Cosmochim. Acta 2018, 236, 60–78. [Google Scholar] [CrossRef]
- Wang, J.F.; Chen, J.A.; Ding, S.M.; Guo, J.; Christopher, D.; Dai, Z.; Yang, H. Effects of seasonal hypoxia on the release of phosphorus from sediments in deep-water ecosystem: A case study in Hongfeng Reservoir, Southwest China. Environ. Pollut. 2016, 219, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Zhang, R.Y.; Chen, J.A. Physicochemical characteristics of the overlying water and spatial-temporal distribution of carbon, nitrogen and silicon in Lake Hongfeng, Guizhou Province, China (in Chinese). Earth Einviron. 2017, 45, 383–389. [Google Scholar]
- Nigro, A.; Sappa, G.; Barbieri, M. Application of boron and tritium isotopes for tracing landfill contamination in groundwater. J. Geochem. Explor. 2017, 172, 101–108. [Google Scholar] [CrossRef]
- Boschetti, T.; Awaleh, M.; Barbieri, M. Waters from the Djiboutian Afar: A Review of Strontium Isotopic Composition and a Comparison with Ethiopian Waters and Red Sea Brines. Water 2018, 10, 1700. [Google Scholar] [CrossRef]
- Maréchal, C.N.; Télouk, P.; Albarède, F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem. Geol. 1999, 156, 51–273. [Google Scholar] [CrossRef]
- Suohan, T.; Xiangkun, Z.; Jin, L.; Bin, Y.A.N. Preparation of reference material for Cu, Fe and Zn isotope measurement of geological samples. Acta Petrol. Mineral. 2008, 4, 279–284. [Google Scholar]
- Li, J.; Tang, S.; Zhu, X.; Li, Z.; Li, S.Z.; Yan, B.; Wang, Y.; Sun, J.; Shi, Y.; Dong, A. Basaltic and Solution Reference Materials for Iron, Copper and Zinc Isotope Measurements. Geostand. Geoanal. Res. 2018, 43, 163–175. [Google Scholar] [CrossRef]
- Aizaki, M.; Otsuki, A.; Fukushima, T.; Hosomi, M.; Muraoka, K. Application of Carlson’s trophic state index to Japanese lakes and relationships between the index and other parameters. Proc. Int. Assoc. Theor. Appl. Limnol. 1981, 16, 19–22. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, Y.; Zhang, B.; Wang, Z. Assessment of Chlorophyll-a Concentration and Trophic State for Lake Chagan Using Landsat TM and Field Spectral Data. Environ. Monit. Assess. 2007, 129, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.I. Vertical distribution and diel migration of flagellated phytoplankton in a small humic lake. Hydrobiologia 1988, 161, 75–87. [Google Scholar] [CrossRef]
- Langenberg, V.T.; Mwape, L.M.; Tshibangu, K.; Tumba, J.M.; Koelmans, A.A.; Roijackers, R.; Salonen, K.; Sarvala, J.; Mölsä, H. Comparison of thermal stratification, light attenuation, and chlorophyll- a dynamics between the ends of Lake Tanganyika. Aquat. Ecosyst. Health Manag. 2002, 5, 255–265. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Y.; Feng, S.; Wang, S. Vertical migration patterns of different phytoplankton species during a summer bloom in Dianchi Lake, China. Environ. Earth Sci. 2015, 74, 3805–3814. [Google Scholar] [CrossRef]
- Waples, J.T.; Klump, J.V. Vertical and horizontal particle transport in the coastal waters of a large lake: An assessment by sediment trap and thorium--234 measurements. J. Geophys. Res. Oceans 2013, 118, 5376–5397. [Google Scholar] [CrossRef]
- Tranvik, L.J. Allochthonous Dissolved Organic-Matter as an Energy-Source for Pelagic Bacteria and the Concept of the Microbial Loop. Hydrobiologia 1992, 229, 107–114. [Google Scholar] [CrossRef]
- Sachse, A.; Henrion, R.; Gelbrecht, J.; Steinberg, C.E.W. Classification of dissolved organic carbon (DOC) in river systems: Influence of catchment characteristics and autochthonous processes. Org. Geochem. 2005, 36, 923–935. [Google Scholar] [CrossRef]
- Hiriart-Baer, V.P.; Fortin, C.; Lee, D.Y.; Campbell, P.G. Toxicity of silver to two freshwater algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata, grown under continuous culture conditions: Influence of thiosulphat. Aquat. Toxicol. 2006, 78, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Malinskyrushansky, N.Z.; Legrand, C. Excretion of dissolved organic carbon by phytoplankton of different sizes and subsequent bacterial uptake. Mar. Ecol. Progress 1996, 132, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Rochelle-Newall, E.J.; Fisher, T.R. Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay. Mar. Chem. 2002, 77, 23–41. [Google Scholar] [CrossRef]
- Kusakabe, M.; Tiodjio, R.E.; Christenson, B.; Saiki, K.; Ohba, T.; Yaguchi, M. Enrichment of ferrous iron in the bottom water of Lake Nyos. J. Afr. Earth Sci. 2018, 150, 37–46. [Google Scholar] [CrossRef]
- Simmonds, B.; Wood, S.A.; Özkundakci, D.; Hamilton, D.P. Phytoplankton succession and the formation of a deep chlorophyll maximum in a hypertrophic volcanic lake. Hydrobiologia 2015, 745, 297–312. [Google Scholar] [CrossRef]
- Beard, B.L.; Johnson, C.M.; Skulan, J.L.; Nealson, K.H.; Cox, L.; Sun, H. Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem. Geol. 2003, 195, 87–117. [Google Scholar]
- Timmermans, K.R.; Gerringa, L.J.A.; de Baar, H.J.W.; van der Wagt, B.; Veldhuis, M.J.W.; de Jong, J.T.M.; Croot, P.L.; Boye, M. Growth rates of large and small Southern Ocean diatoms in relation to availability of iron in natural seawater. Limnol. Oceanogr. 2001, 46, 260–266. [Google Scholar] [CrossRef]
- Ussher, S.J.; Achterberg, E.P.; Worsfold, P.J. Marine Biogeochemistry of Iron. Environ. Chem. 2004, 1, 67–80. [Google Scholar] [CrossRef]
- Radic, A.; Lacan, F.; Murray, J.W. Iron isotopes in the seawater of the equatorial Pacific Ocean: New constraints for the oceanic iron cycle. Earth Planet. Sci. Lett. 2011, 306, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W. EnvironmentaI Characteristics and Eutrophication of Hongfeng Lake and Baihua Lake; Guizhou Science and TechnoIogy Press: Guiyang, China, 1999; pp. 20–58. (In Chinese) [Google Scholar]
- Xiao, H.Y.; Liu, C.Q.; Li, S.L.; Wang, S.L. Nitrogen biogeochemical cycles in lakes with strong hydraulic power during summer stratification: A case study of Hongfeng Lake in Guizhou Province, Southwest China. Geochimica 2002, 31, 571–576. (In Chinese) [Google Scholar]
- Shaked, Y.; Erel, Y.; Sukenik, A. Phytoplankton-Mediated Redox Cycle of Iron in the Epilimnion of Lake Kinneret. Environ. Sci. Technol. 2002, 36, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Lili, L.; Congqiang, L.; Zhongliang, W. The application of copper and zinc isotope method in environment geochemistry. Earth Environ. 2006, 34, 81–89. [Google Scholar]
- Beard, B.L.; Johnson, C.M.; Von Damm, K.L.; Poulson, R.L. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology 2003, 31, 629–632. [Google Scholar] [CrossRef]
- Waeles, M.; Baker, A.R.; Jickells, T.; Hoogewerff, J. Global dust teleconnections: Aerosol iron solubility and stable isotope composition. Environ. Chem. 2007, 4, 233–237. [Google Scholar] [CrossRef]
- González, A.G.; Pokrovsky, O.S.; Jiménez-Villacorta, F.; Shirokova, L.S.; Santana-Casiano, J.M.; González-Dávila, M.; Emnova, E.E. Iron adsorption onto soil and aquatic bacteria: XAS structural study. Chem. Geol. 2014, 372, 32–45. [Google Scholar] [CrossRef]
- Mulholland, D.S.; Poitrasson, F.; Shirokova, L.S.; González, A.G.; Pokrovsky, O.S.; Boaventura, G.R.; Vieira, L.C. Iron isotope fractionation during Fe (II) and Fe (III) adsorption on cyanobacteria. Chem. Geol. 2015, 400, 24–33. [Google Scholar] [CrossRef]
- Sun, R.; Wang, B. Iron isotope fractionation during uptake of ferrous ion by phytoplankton. Chem. Geol. 2018, 481, 65–73. [Google Scholar] [CrossRef]
- Wiesli, R.A.; Beard, B.L.; Johnson, C.M. Experimental detemination of Fe isotope factionation between aquous Fe (II), siderite and “green rust” in abiotic system. Chem. Geol. 2005, 211, 343–362. [Google Scholar] [CrossRef]
- Johnson, C.M.; Roden, E.E.; Welch, S.A.; Beard, B.L. Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction. Geochim. Cosmochim. Acta 2005, 69, 963–993. [Google Scholar] [CrossRef]
- Bullen, T.D.; White, A.F.; Childs, C.W.; Vivit, D.V.; Schulz, M.S. Demonstration of significant abiotic iron isotope fractionation in nature. Geology 2001, 29, 699–702. [Google Scholar] [CrossRef]
Carlson Index | Lake Nutrition Level |
---|---|
0~20 | Oligotrophic |
20~50 | Mesotrophic |
50~70 | Eutrophic |
70~100 | Heavy Eutrophic |
Sample | Date | Depth | T | pH | DO | EC | DOC | H4SiO4 | Chl-a | Fed | Mnd | Ald | SO42− | NO3− | Cl− |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Station | (m) | (°C) | (mg·L−1) | (μs·cm−1) | (mg·L−1) | (mg·L−1) | (μg·L−1) | (μM) | (μM) | (μM) | (μM) | (μM) | (μM) | ||
HW | Aug. 2006 | 0 | 28.10 | 9.37 | 8.10 | 293.20 | 4.91 | 1.07 | 42.10 | 0.04 | 0.01 | 1.19 | 0.69 | 0.00 | 0.17 |
HW | Aug. 2006 | 3 | 26.60 | 8.49 | 5.48 | 303.20 | 4.65 | 1.06 | 29.23 | 0.04 | 0.01 | 0.89 | 0.73 | 0.05 | 0.17 |
HW | Aug. 2006 | 6 | 26.30 | 8.42 | 3.27 | 337.40 | 4.27 | 1.09 | 21.06 | 0.04 | 0.00 | 0.65 | 0.83 | 0.04 | 0.18 |
HW | Aug. 2006 | 9 | 25.90 | 8.21 | 3.80 | 348.00 | 4.14 | 1.68 | 11.74 | 0.05 | 0.01 | 0.67 | 0.70 | 0.05 | 0.17 |
HW | Aug. 2006 | 12 | 24.10 | 7.66 | 1.58 | 380.40 | 3.90 | 1.78 | 7.50 | 0.03 | 0.01 | 0.08 | 0.63 | 0.06 | 0.15 |
HW | Aug. 2006 | 15 | 23.30 | 7.54 | 1.39 | 389.10 | 3.83 | 2.08 | 5.23 | 0.04 | 0.01 | 0.18 | 0.58 | 0.01 | 0.14 |
HW | Aug. 2006 | 19 | 22.60 | 7.44 | 1.12 | 406.50 | 4.02 | 2.23 | 0.04 | 0.01 | 0.00 | 0.67 | 0.04 | 0.16 | |
HW | Aug. 2006 | 20 | 18.10 | 7.42 | 1.09 | 429.30 | 4.36 | 2.85 | 0.09 | 2.02 | 0.00 | 0.70 | 0.01 | 0.18 | |
HW | Aug. 2006 | 21 | 0.16 | 4.10 | 0.10 | ||||||||||
HW | Jan. 2007 | 0 | 8.00 | 8.31 | 8.70 | 359.00 | 3.28 | 0.63 | 9.91 | 0.02 | 0.45 | 1.00 | 0.11 | 0.19 | |
HW | Jan. 2007 | 5 | 7.80 | 7.99 | 8.00 | 354.70 | 2.86 | 0.61 | 10.61 | 0.01 | 0.16 | 0.99 | 0.11 | 0.19 | |
HW | Jan. 2007 | 10 | 8.10 | 8.13 | 7.30 | 352.90 | 3.28 | 0.64 | 10.52 | 0.01 | 0.57 | 1.00 | 0.11 | 0.19 | |
HW | Jan. 2007 | 15 | 8.00 | 7.94 | 6.80 | 351.70 | 3.10 | 0.67 | 8.36 | 0.01 | 0.20 | 1.01 | 0.11 | 0.19 | |
HW | Jan. 2007 | 20 | 7.80 | 8.18 | 6.40 | 352.00 | 3.40 | 0.68 | 8.34 | 0.02 | 0.75 | 1.00 | 0.10 | 0.19 | |
HW | Jan. 2007 | 25 | 7.50 | 8.08 | 8.70 | 353.80 | 3.49 | 0.71 | 5.58 | 0.03 | 0.52 | 1.00 | 0.10 | 0.20 | |
YCR | Aug. 2006 | 0 | 26.50 | 7.37 | 7.8 | 447.60 | 3.29 | 5.13 | 0.68 | 0.32 | 2.18 | 0.61 | 0.09 | 0.33 | |
YCR | Jan. 2007 | 0 | 3.40 | 7.08 | 7.70 | 481.60 | 2.17 | 10.34 | 0.36 | 5.33 | 0.83 | 0.32 | 0.63 | ||
MXR | Aug. 2006 | 0 | 26.30 | 8.04 | 9.6 | 300.60 | 7.16 | 1.37 | 0.23 | 0.38 | 0.16 | 0.56 | 0.01 | 0.03 | |
MXR | Jan. 2007 | 0 | 4.20 | 7.67 | 8.50 | 360.50 | 2.45 | 1.53 | 0.04 | 0.18 | 0.85 | 0.04 | 0.11 | ||
HLR | Aug. 2006 | 0 | 24.90 | 8.07 | 9.7 | 393.90 | 5.08 | 2.87 | 0.44 | 0.10 | <0.01 | 0.49 | 0.01 | 0.09 | |
HLR | Jan. 2007 | 0 | 3.90 | 9.72 | 8.40 | 402.50 | 3.04 | 1.28 | 0.23 | 0.37 | 0.92 | 0.07 | 0.16 | ||
MTR | Aug. 2006 | 0 | 20.70 | 7.49 | 3.1 | 464.40 | 5.27 | 2.41 | 0.08 | 0.11 | <0.01 | 1.21 | 0.00 | 0.25 | |
MTR | Jan. 2007 | 0 | 6.90 | 7.42 | 10.00 | 384.90 | 2.95 | 0.69 | 0.05 | 0.15 | 1.18 | 0.20 | 0.20 |
Sample | Date | Depth | δ56Fe | δ57Fe | Fe | Mn | Al | Fe/Al | Mn/Al |
---|---|---|---|---|---|---|---|---|---|
Station | (m) | (‰) | (‰) | (μmol·L−1) | (μmol·L−1) | (μmol·L−1) | |||
HW | Aug. 2006 | 0 | 0.13 | 0.23 | 0.86 | 0.09 | 2.31 | 0.37 | 0.04 |
HW | Aug. 2006 | 3 | 0.10 | 0.13 | 2.07 | 0.10 | 4.44 | 0.47 | 0.02 |
HW | Aug. 2006 | 6 | 0.06 | 0.08 | 0.96 | 0.11 | 2.42 | 0.40 | 0.04 |
HW | Aug. 2006 | 9 | 0.03 | 0.11 | 1.56 | 0.71 | 3.30 | 0.47 | 0.21 |
HW | Aug. 2006 | 12 | 0.04 | 0.11 | 1.57 | 0.61 | 3.37 | 0.47 | 0.18 |
HW | Aug. 2006 | 15 | 0.14 | 0.24 | 0.61 | 0.38 | 1.78 | 0.34 | 0.22 |
HW | Aug. 2006 | 19 | 0.07 | 0.15 | 1.23 | 1.26 | 2.55 | 0.48 | 0.49 |
HW | Aug. 2006 | 20 | −0.18 | −0.19 | 2.19 | 0.23 | 2.11 | 1.04 | 0.11 |
HW | Aug. 2006 | 21 | −0.14 | −0.21 | |||||
HW | Jan. 2007 | 0 | −0.04 | 0.00 | 0.97 | 0.13 | 1.97 | 0.49 | 0.07 |
HW | Jan. 2007 | 5 | −0.04 | 0.00 | 1.03 | 0.18 | 2.02 | 0.51 | 0.09 |
HW | Jan. 2007 | 10 | −0.08 | −0.14 | 1.02 | 0.19 | 1.96 | 0.52 | 0.09 |
HW | Jan. 2007 | 15 | 0.09 | 0.16 | 0.53 | 0.09 | 1.56 | 0.34 | 0.06 |
HW | Jan. 2007 | 20 | −0.85 | −1.24 | 1.44 | 0.17 | 2.99 | 0.48 | 0.06 |
HW | Jan. 2007 | 25 | −0.03 | −0.05 | 1.49 | 0.17 | 4.14 | 0.36 | 0.04 |
YCR | Aug. 2006 | 0 | −0.18 | −0.25 | 2.00 | 0.34 | 5.67 | 0.35 | 0.06 |
YCR | Jan. 2007 | 0 | −0.49 | −0.71 | 2.47 | 0.09 | 3.88 | 0.64 | 0.02 |
MXR | Aug. 2006 | 0 | 0.10 | 0.21 | 2.33 | 0.51 | 4.67 | 0.50 | 0.11 |
MXR | Jan. 2007 | 0 | 0.03 | 0.03 | 0.85 | 0.02 | 1.09 | 0.79 | 0.02 |
HLR | Aug. 2006 | 0 | 0.06 | 0.12 | 2.27 | 0.16 | 7.62 | 0.30 | 0.02 |
HLR | Jan. 2007 | 0 | 0.04 | 0.06 | 1.71 | 0.11 | 5.69 | 0.30 | 0.02 |
MTR | Aug. 2006 | 0 | −0.46 | −0.68 | 0.23 | 1.66 | 0.24 | 0.98 | 6.90 |
MTR | Jan. 2007 | 0 | −0.06 | −0.11 | 0.54 | 0.22 | 1.56 | 0.35 | 0.14 |
Phytoplankton | Jan. 2007 | 0 | 0.36 | 0.53 | 0.52 | 0.05 | |||
Aerosol-1 | Oct. 2006 | 0.08 | 0.14 | 0.37 | 0.01 | ||||
Aerosol-2 | Oct. 2006 | 0.12 | 0.17 | 0.39 | 0.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Teng, Y.; Song, L. Iron Isotopic Composition of Suspended Particulate Matter in Hongfeng Lake. Water 2019, 11, 396. https://doi.org/10.3390/w11020396
Zheng X, Teng Y, Song L. Iron Isotopic Composition of Suspended Particulate Matter in Hongfeng Lake. Water. 2019; 11(2):396. https://doi.org/10.3390/w11020396
Chicago/Turabian StyleZheng, Xiaodi, Yanguo Teng, and Liuting Song. 2019. "Iron Isotopic Composition of Suspended Particulate Matter in Hongfeng Lake" Water 11, no. 2: 396. https://doi.org/10.3390/w11020396
APA StyleZheng, X., Teng, Y., & Song, L. (2019). Iron Isotopic Composition of Suspended Particulate Matter in Hongfeng Lake. Water, 11(2), 396. https://doi.org/10.3390/w11020396