Allocating Water in the Mekong River Basin during the Dry Season
Abstract
:1. Introduction
2. Method
3. Computing Bargaining Power
4. Case Study
4.1. Data and Modeling
4.2. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Salman, S.M. The Helsinki rules, the UN watercourses convention and the Berlin rules: Perspectives on international water law. Int. J. Water Resour. Dev. 2007, 23, 625–640. [Google Scholar] [CrossRef]
- Tony, A. Virtual Water: Tackling the Threat to Our Planet’s Most Precious Resource, 1st ed.; I.B.Tauris: London, UK, 2011. [Google Scholar]
- Antonelli, M.; Greco, F. The Water We Eat: Combining Virtual Water and Water Footprints, 1st ed.; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Hussein, H. Lifting the veil: Unpacking the discourse of water scarcity in Jordan. Environ. Sci. Policy 2018, 89, 385–392. [Google Scholar] [CrossRef]
- Degefu, D.M.; He, W.; Yuan, L.; Min, A.; Zhang, Q. Bankruptcy to surplus: Sharing transboundary river basin’s water under scarcity. Water Resour. Manag. 2018, 32, 2735–2751. [Google Scholar] [CrossRef]
- Degefu, D.M.; He, W.; Yuan, L.; Zhao, J.H. Water allocation in transboundary river basins under water scarcity: A cooperative bargaining approach. Water Resour. Manag. 2016, 30, 4451–4466. [Google Scholar] [CrossRef]
- The Transboundary Waters Assessment Programme (TWAP). The Global Transboundary River Basins. Available online: http://twap-rivers.org/#home (accessed on 12 April 2018).
- Fu, J.; Zhong, P.A.; Zhu, F.; Chen, J.; Wu, Y.N.; Xu, B. Water resources allocation in transboundary river based on asymmetric Nash–Harsanyi Leader–Follower game model. Water 2018, 10, 270. [Google Scholar] [CrossRef]
- Madani, K. Game theory and water resources. J. Hydrol. 2010, 381, 225–238. [Google Scholar] [CrossRef]
- Fayaed, S.S.; El-Shafie, A.; Jaafar, O. Reservoir-system simulation and optimization techniques. Stoch. Environ. Res. Risk Assess. 2013, 27, 1751–1772. [Google Scholar] [CrossRef]
- Madani, K.; Hooshyar, M. A game theory-reinforcement learning (GT–RL) method to develop optimal operation policies for multi-operator reservoir systems. J. Hydrol. 2014, 519, 732–742. [Google Scholar] [CrossRef]
- Nafarzadegan, A.R.; Vagharfard, H.; Nikoo, M.R.; Nohegar, A. Socially-optimal and Nash Pareto-Based alternatives for water allocation under uncertainty: An approach and application. Water Res. Manag. 2018, 32, 2985–3000. [Google Scholar] [CrossRef]
- Han, Q.; Tan, G.; Fu, X.; Mei, Y.; Yang, Z. Water resource optimal allocation based on Multi-Agent game theory of Hanjiang River Basin. Water 2018, 10, 1184. [Google Scholar] [CrossRef]
- Hussein, H. Politics of the Dead Sea Canal: A historical review of the evolving discourses, interests, and plans. Water Int. 2017, 42, 527–542. [Google Scholar] [CrossRef]
- Alatout, S. Bringing abundance into environmental politics: Constructing a Zionist network of water abundance, immigration, and colonization. Soc. Stud. Sci. 2009, 39, 363–394. [Google Scholar] [CrossRef] [PubMed]
- Feitelson, E. Implications of shifts in the Israeli water discourse for Israeli-Palestinian water negotiations. Political Geogr. 2002, 21, 293–318. [Google Scholar] [CrossRef]
- Zeitoun, M.; Mirumachi, N. Transboundary water interaction I: Reconsidering conflict and cooperation. Int. Environ. Agreem. 2008, 8, 297–316. [Google Scholar] [CrossRef]
- Degefu, D.M.; He, W. Allocating Water under Bankruptcy Scenario. Water Resour. Manag. 2016, 30, 3949–3964. [Google Scholar] [CrossRef]
- Alatout, S. Water balances in Palestine: Numbers and political cultures in the Middle East. In Water Balances in the Eastern Mediterranean, 1st ed.; Brooks, D., Mehmet, O., Eds.; International Development Research Centre: Ottawa, ON, Canada, 2000; pp. 59–84. [Google Scholar]
- Alatout, S. Imagining Hydrological Boundaries, Constructing the Nation State: A ‘Fluid’ History of ISRAEL, 1936–1959. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2003. [Google Scholar]
- Alatout, S. Towards a bio-territorial conception of power: Territory, population, and environmental narratives in Palestine and Israe. Political Geogr. 2006, 25, 601–621. [Google Scholar] [CrossRef]
- Hussein, H. Yarmouk, Jordan, and Disi basins: Examining the impact of the discourse of water scarcity in Jordan on transboundary water governance. Mediterr. Politics 2018, 1, 1–21. [Google Scholar] [CrossRef]
- Von, N.J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Rogers, P. A game theory approach to the problems of international river basins. Water Resour. Res. 1969, 5, 749–760. [Google Scholar] [CrossRef]
- Suzuki, M.; Nakayama, M. The cost assignment of the cooperative water resource development: A game theoretical approach. Manag. Sci. 1976, 22, 1081–1086. [Google Scholar] [CrossRef]
- Dufournaud, C.M. On the mutually beneficial cooperative scheme: Dynamic change in the payoff matrix of international river basin schemes. Water Resour. Res. 1982, 18, 764–772. [Google Scholar] [CrossRef]
- Dinar, A.; Ratner, A.; Yaron, D. Evaluating cooperative game theory in water resources. Theor. Decis. 1992, 32, 1–20. [Google Scholar] [CrossRef]
- Wang, L.Z.; Fang, L.; Hipel, K.W. Water resources allocation: A cooperative game theoretic approach. J. Environ. Inform. 2003, 2, 11–22. [Google Scholar] [CrossRef]
- Wu, X.; Whittington, D. Incentive compatibility and conflict resolution in international river basins: A case study of the Nile Basin. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Kampragou, E.; Eleftheriadou, E.; Mylopoulos, Y. Implementing equitable water allocation in transboundary catchments: The case of river Nestos/Mesta. Water Resour. Manag. 2007, 21, 909–918. [Google Scholar] [CrossRef]
- Kucukmehmetoglu, M. An integrative case study approach between game theory and Pareto frontier concepts for the transboundary water resources allocations. J. Hydrol. 2012, 450, 308–319. [Google Scholar] [CrossRef]
- Zeitoun, M.; Mirumachi, N.; Warner, J. Transboundary water interaction II: The influence of “soft” power. Int. Environ. Agreem. 2011, 11, 159–178. [Google Scholar] [CrossRef]
- Hussein, H. An Analysis of the Discourse of Water Scarcity and Hydropolitical Dynamics in the Case of Jordan. Ph.D. Thesis, University of East Anglia, Norwich, UK, 2016. [Google Scholar]
- Hussein, H.; Grandi, M. Dynamic political contexts and power asymmetries: The cases of the Blue Nile and the Yarmouk Rivers. Int. Environ. Agreem. 2017, 17, 795–814. [Google Scholar] [CrossRef]
- Conker, A. The power struggle in the layer of transnational hydropolitics: The case of the Ilisu dam project. Eurasian J. Soc. Sci. 2016, 4, 14–34. [Google Scholar] [CrossRef]
- O’Neill, B. A problem of rights arbitration from the Talmud. Math. Soc. Sci. 1980, 2, 345–371. [Google Scholar] [CrossRef]
- Grey, D.; Sadoff, C. Beyond the river: The benefits of cooperation on international rivers. Water Policy 2002, 4, 389–403. [Google Scholar] [CrossRef]
- Houba, H.; Laan, G.V.D.; Zeng, Y. International environmental agreements for river sharing problem. Environ. Resour. Econ. 2015, 62, 855–872. [Google Scholar] [CrossRef]
- Rahaman, M. Principles of international water law: Creating effective transboundary water resources management. Int. J. Sustain. Soc. 2009, 1, 207–233. [Google Scholar] [CrossRef]
- Degefu, D.M.; He, W.; Yuan, L. Monotonic bargaining solution for allocating critically scarce transboundary water. Water Resour. Manag. 2017, 31, 2627–2644. [Google Scholar] [CrossRef]
- Giménez-Gómez, J.-M.; Osório, A.; Peris, J.E. From bargaining solutions to claims rules: A proportional approach. Games 2015, 6, 32–38. [Google Scholar] [CrossRef]
- Gallastegui, M.C.; Iñarra, E.; Prellezo, R. Bankruptcy of fishing resources: The northern European anglerfish fishery. Mar. Resour. Econ. 2002, 17, 291–307. [Google Scholar] [CrossRef]
- Dagan, N.; Volij, O. The bankruptcy problem: A cooperative bargaining approach. Math. Soc. Sci. 1993, 26, 287–297. [Google Scholar] [CrossRef]
- Nash, J. The bargaining problem. Econometrica 1950, 18, 155–162. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zeng, Y.; Liu, C. Resolving trans-jurisdictional water conflicts by the Nash bargaining method: A case study in Zhangweinan canal basin in north China. Water Resour. Manag. 2013, 27, 1235–1247. [Google Scholar] [CrossRef]
- Curiel, I.J.; Maschler, M.; Tijs, S.H. Bankruptcy games. Math. Methods Oper. Res. 1987, 31, 143–159. [Google Scholar] [CrossRef]
- Harsányi, J.C. A Simplified bargaining model of the n-person cooperative game. Int. Econ. Rev. 2008, 4, 194–220. [Google Scholar] [CrossRef]
- Mimi, Z.A.; Sawalhi, B.I. A decision tool for allocating the waters of the Jordan River Basin between all riparian parties. Water Resour. Manag. 2003, 17, 447–461. [Google Scholar] [CrossRef]
- Daoudy, M. Hydro-hegemony and international water law: Laying claims to water rights. Water Policy 2008, 10, 89–102. [Google Scholar] [CrossRef]
- Vinogradov, S.; Wouters, P.; Jones, P. Transforming Potential Conflict into Cooperation Potential: The Role of International Water Law; UNESCO: Paris, France, 2003. [Google Scholar]
- Eckstein, G. Water scarcity, conflict and security in a climate change world: Challenges and opportunities for international law and policy. Wis. Int. Law J. 2009, 27, 409–461. [Google Scholar]
- The Helsinki Rules on the Uses of the Waters of International Rivers. Available online: https://web.archive.org/web/20070625012949/http://webworld.unesco.org/water/wwap/pccp/cd/pdf/educational_tools/course_modules/reference_documents/internationalregionconventions/helsinkirules.pdf (accessed on 15 January 2018).
- Convention on the Law of Non-Navigational Uses of International Watercourses. Available online: http://legal.un.org/ilc/texts/instruments/english/conventions/8_3_1997.pdf (accessed on 15 January 2018).
- Tian, X.; Kong, L. Development of international water law. J. Ecol. Water Resour. 2012, 30, 34–36. [Google Scholar] [CrossRef]
- Feng, Y.; He, D.; Bao, H. Impact of development of international water law on integrated and coordinated development of international drainage basins. Resour. Sci. 2000, 22, 81–84. [Google Scholar] [CrossRef]
- Diebel, M.W.; Maxted, J.T.; Nowak, P.J.; Vander, Z.M.J. Landscape planning for agricultural nonpoint source pollution reduction I: A geographical allocation framework. Environ. Manag. 2008, 42, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Lu, H.W.; Ren, L.X.; He, L. A fuzzy inexact two-phase programming approach to solving optimal allocation problems in water resources management. Appl. Math. Model. 2014, 38, 5502–5514. [Google Scholar] [CrossRef]
- Lautze, J.; Kirshen, P. Water allocation, climate change, and sustainable water use in Israel/Palestine: The Palestinian position. Water Int. 2009, 34, 189–203. [Google Scholar] [CrossRef]
- Zhong, P.; Yang, Z.; Cui, B.; Liu, J. Eco-environmental water demands for the Baiyangdian Wetland. Front. Environ. Sci. Eng. 2008, 2, 73–80. [Google Scholar] [CrossRef]
- Roozbahani, R.; Schreider, S.; Abbasi, B. Optimal water allocation through a multi-objective compromise between environmental, social, and economic preferences. Environ. Model. Softw. 2015, 64, 18–30. [Google Scholar] [CrossRef]
- Bakker, K. The “Commons” Versus the “Commodity”: Alter-globalization, anti-privatization and the human right to water in the global south. Antipode 2007, 39, 430–455. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhang, J.Y.; He, R.M.; Wang, Y.C. Study on the evolution law of water utilization structure and regulating approach in Yulin City. China Popul. Resour. Environ. 2011, 21, 61–65. [Google Scholar] [CrossRef]
- Smakhtin, V.; Revenga, C.; Döll, P. A pilot global assessment of environmental water requirements and scarcity. Water Int. 2004, 29, 307–317. [Google Scholar] [CrossRef]
- Fang, L.; Nuppenau, E.A. A Spatial Model (SWAM) for water efficiency and irrigation technology choices using GAMS—A case study from Northwestern China. In Proceedings of the Seventh Annual Conference on Global Economic Analysis, Washington, DC, USA, 17–19 June 2004. [Google Scholar]
- Dridi, C.; Khanna, M. Irrigation technology adoption and gains from water trading under asymmetric information. Am. J. Agric. Econ. 2005, 87, 289–301. [Google Scholar] [CrossRef]
- Elmusa, S.S. Towards an equitable distribution of the common Palestinian-Israeli waters: An international water law framework. Stud. Environ. Sci. 1994, 58, 451–467. [Google Scholar] [CrossRef]
- Zilberman, D.; MacDougall, N.; Sha, F. Changes in water allocation mechanisms for California agriculture. Contemp. Econ. Policy 1994, 12, 122–133. [Google Scholar] [CrossRef]
- Gleick, P.H. The human right to water. Water Policy 1998, 1, 487–503. [Google Scholar] [CrossRef]
- Davidson, B.; Malano, H.; Nawarathna, B.; Maheshwari, B. The hydrological and economic impacts of changing water allocation in political regions within the peri-urban South Creek catchment in Western Sydney I: Model development. J. Hydrol. 2013, 499, 339–348. [Google Scholar] [CrossRef]
- Babel, M.S.; Gupta, A.D.; Nayak, D.K. A model for optimal allocation of water to competing demands. Water Resour. Manag. 2005, 19, 693–712. [Google Scholar] [CrossRef]
- Zhang, X.L.; Ding, J.; Li, Z.Y.; Jin, J.L. Application of new projection pursuit algorithm in assessing water quality. China Environ. Sci. 2000, 20, 187–189. [Google Scholar] [CrossRef]
- Jin, J.L.; Yang, X.H.; Ding, J. Real coding based acceleration genetic algorithm. J. Sichuan Univ. (Eng. Sci. E) 2000, 32, 20–24. [Google Scholar] [CrossRef]
- State of the Basin Report. Available online: http://www.mrcmekong.org/assets/Publications/basin-reports/MRC-SOB-report-2010full-report.pdf (accessed on 10 February 2017).
- Do, K.H.P.; Dinar, A. The role of issue linkage in managing noncooperating basins: The case of the Mekong. Nat. Resour. Model. 2014, 27, 492–518. [Google Scholar] [CrossRef]
- Overview of the Hydrology of the Mekong Basin. Available online: http://www.mekonginfo.org/assets/midocs/0001968-inland-waters-overview-of-the-hydrology-of-the-mekong-basin.pdf (accessed on 12 February 2017).
- Tang, H.X. Water resources in the Lancang-Mekong river basin and analysis on the present situation of its utilization. Yunnan Geogr. Environ. Res. 1999, 11, 16–25. [Google Scholar]
- Claudia, R. Optimal Water Allocation in the Mekong River Basin; Center for Development Research: Bonn, Germany, 2001. [Google Scholar]
- Zhou, T.; Zhou, C.; Yu, F.; Zhao, Y. Spatial and temporal distribution characteristics analysis of meteorological drought in Lancang–Mekong River Basin. Water Resour. Power 2011, 6, 4–7. [Google Scholar]
- Mianabadi, H.; Mostert, E.; Pande, S.; van de Giesen, N. Weighted bankruptcy rules and transboundary water resources allocation. Water Resour. Manag. 2015, 29, 2303–2321. [Google Scholar] [CrossRef]
Indicators | Indexes | Attribute |
---|---|---|
Geographical | Watershed area | Positive |
Hydrological | Multi-year average flow | Positive |
Climate | Average annual rainfall | Positive |
Economic and social needs | Irrigated area | Positive |
Electricity demand | Positive | |
Population | Population density | Positive |
Water quantity | Watershed contribution | Positive |
Ecological needs | Forest cover rate | Positive |
Cost of alternatives, availability, and increasing water use efficiency | Water productivity | Negative |
Internal renewable freshwater resources | Negative | |
May cause harm to other countries | Per capita gross domestic product | Negative |
Countries | China | Myanmar | Laos | Thailand | Cambodia | Vietnam |
---|---|---|---|---|---|---|
Water demand (km3) | 100.99 | 0.99 | 0.29 | 7.18 | 0.27 | 19.84 |
Indexes | Unit | China | Myanmar | Laos | Thailand | Cambodia | Vietnam |
---|---|---|---|---|---|---|---|
Area | 104 km2 | 16.50 | 2.40 | 20.20 | 18.40 | 15.50 | 6.50 |
Annual average precipitation | mm | 645 | 2091 | 1834 | 1622 | 1904 | 1821 |
Average annual water quantity | m3/s | 2410 | 300 | 5270 | 2560 | 2860 | 1660 |
Forest cover rate | % | 55.70 | 44.50 | 81.30 | 32.10 | 53.60 | 47.60 |
Internal renewable freshwater resources | km3 | 112.72 | 1003 | 190.40 | 224.50 | 120.60 | 359.40 |
Watershed population density | people/km2 | 46 | 24 | 33 | 147 | 107 | 366 |
Flow contribution | % | 16 | 2 | 35 | 18 | 18 | 11 |
Electricity demand | 103 MW | 114.30 | 1.59 | 0.65 | 25.61 | 0.40 | 20.00 |
Irrigated area | 104 hm2 | 51.60 | 8.60 | 30.10 | 129 | 34.40 | 180.60 |
Water productivity | $/m3 | 14.90 | 2.30 | 2.80 | 6.70 | 6.80 | 1.80 |
Per capita gross domestic product | $ | 4850 | 1152 | 1752 | 6100 | 1065 | 1963 |
Countries | Water Demand (km3) | Disagreement Point (km3) | Bargaining Power | Water Allocation (km3) |
---|---|---|---|---|
China | 100.99 | 53.70 | 17.34% | 64.43 |
Myanmar | 0.99 | 0 | 5.93% | 0.99 |
Laos | 0.29 | 0 | 26.48% | 0.29 |
Thailand | 7.18 | 0 | 17.32% | 7.18 |
Cambodia | 0.27 | 0 | 17.35% | 0.27 |
Vietnam | 19.84 | 0 | 15.58% | 9.10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; He, W.; Liao, Z.; Degefu, D.M.; An, M.; Zhang, Z.; Wu, X. Allocating Water in the Mekong River Basin during the Dry Season. Water 2019, 11, 400. https://doi.org/10.3390/w11020400
Yuan L, He W, Liao Z, Degefu DM, An M, Zhang Z, Wu X. Allocating Water in the Mekong River Basin during the Dry Season. Water. 2019; 11(2):400. https://doi.org/10.3390/w11020400
Chicago/Turabian StyleYuan, Liang, Weijun He, Zaiyi Liao, Dagmawi Mulugeta Degefu, Min An, Zhaofang Zhang, and Xia Wu. 2019. "Allocating Water in the Mekong River Basin during the Dry Season" Water 11, no. 2: 400. https://doi.org/10.3390/w11020400
APA StyleYuan, L., He, W., Liao, Z., Degefu, D. M., An, M., Zhang, Z., & Wu, X. (2019). Allocating Water in the Mekong River Basin during the Dry Season. Water, 11(2), 400. https://doi.org/10.3390/w11020400