Hydrologic Response of Meadow Restoration the First Year Following Removal of Encroached Conifers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Study Design
2.3. Volumetric Soil Moisture
2.4. Water Table Depth
2.5. Statistical Analysis for Change Detection
2.6. Durations of Depth to Water Table for Meadow Vegetation
2.7. Meadows’ Water Budgets
2.7.1. Saturated Excess Overland Flow (QSEOF)
2.7.2. Infiltration (I) and Change in Storage (ΔS)
2.7.3. Evapotranspiration (ET)
3. Results
3.1. Statistical Analysis
3.1.1. Soil Moisture
3.1.2. Water Table Depth
3.2. Growing Season Durations at Rooting Depths
3.3. Meadow Water Budgets
4. Discussion
4.1. Sub-Surface Water Change due to Conifer Removal
4.2. Evapotranspiration Response of Conifer Removal
4.3. Depth to Water Table Promoting Meadow Vegetation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Halpern, C.; Haugo, R.; Antos, J.; Kaas, S.; Kilanowski, A. Grassland restoration with and without fire: Evidence from a tree-removal experiment. Ecol. Appl. 2012, 22, 425–441. [Google Scholar] [CrossRef] [PubMed]
- McIlroy, S.; Allen-Diaz, B. Plant community distribution along water table and grazing gradients in montane meadows of the Sierra Nevada Range (California, USA). Wetl. Ecol. Manag. 2012, 20, 287–296. [Google Scholar] [CrossRef]
- Viers, J.; Purdy, S.; Peek, R.; Fryjoff-Hung, A.; Santos, N.; Katz, J.; Emmons, J.; Dolan, D.; Yarnell, S. Montane Meadows in the Sierra Nevada: Changing Hydroclimatic Conditions and Concepts for Vulnerability Assessment; Center for Watershed Sciences Technical Report (CWS-2013-01); University of California: Davis, CA, USA, 2013; 63p. [Google Scholar]
- Norton, J.; Olsen, H.; Jungst, L.; Legg, D.; Horwath, W. Soil carbon and nitrogen storage in alluvial wet meadows of the Southern Sierra Nevada Mountains, USA. J. Soils Sediments 2013, 14, 34–43. [Google Scholar] [CrossRef]
- Tokarczyk, N. Forest encroachment on temperate mountain meadows—Scale, drivers, and current research directions. Geogr. Pol. 2017, 90, 463–480. [Google Scholar] [CrossRef]
- Shaw, A. Conservation and Ecological Restoration of Rocky Mountain Subalpine Meadows: Vegetation Responses to Tree Encroachment. Master’s Thesis, University of Victoria, Victoria, BC, Canada; 109p.
- Burns, R.; Honkala, B. Silvics of North America: Conifers. Agriculture Handbook 654; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990; Volume 1, 675p.
- Takaoka, S.; Swanson, F. Change in Extent of Meadows and Shrub Fields in the Central Western Cascade Range, Oregon. Prof. Geogr. 2008, 60, 527–540. [Google Scholar] [CrossRef]
- Gross, S.; Coppoletta, M. Historic Range of Variability for Meadows in the Sierra Nevada and South Cascades; United States Department of Agriculture Forest Service: Davis, CA, USA, 2013. Available online: http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5434345.pdf (accessed on 24 July 2014).
- Taylor, A. Tree invasion in meadows of Lassen Volcanic National Park. Calif. Prof. Geogr. 1990, 42, 457–470. [Google Scholar] [CrossRef]
- Ratliff, R. Meadows in the Sierra Nevada of California: State of Knowledge; Gen. Tech. Report PSW-84; USDA Forest Service: Davis, CA, USA, 1985; 59p.
- Vankat, J. Fire and man in Sequoia National Park. Ann. Assoc. Am. Geogr. 1977, 67, 17–27. [Google Scholar] [CrossRef]
- Chambers, J.; Miller, J.; Germanoski, D. Geomorphology, Hydrology, and Ecology of Great Basin Meadow Complexes—Implications for Management and Restoration; Gen. Tech. Rep. RMRS-GTR-258; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2011; 125p.
- Weixelman, D.; Hill, B.; Cooper, D.; Berlow, E.; Viers, J.; Purdy, S.; Merrill, A.; Gross, S. Meadow Hydrogeomorphic Types for the Sierra Nevada and Southern Cascades Ranges in California: A Field Key; Gen. Tech. Rep. R5-TP-034; USDA Forest Service: Fort Collins, CO, USA, 2011.
- Hammersmark, C.; Rains, M.; Wickland, A.; Mount, J. Vegetation and water-table relationships in a hydrologically restored riparian meadow. Wetlands 2009, 29, 785–797. [Google Scholar] [CrossRef]
- Knowles, N.; Dettinger, M.; Cayan, D. Trends in snowfall versus rainfall in the western United States. J. Clim. 2006, 19, 4545–4559. [Google Scholar] [CrossRef]
- Hamlet, A.; Carrasco, P.; Deems, J.; Elsner, M.; Kamstra, T.; Lee, C.; Lee, S.-Y.; Mauger, G.; Salathe, E.; Tohver, I.; et al. Final Project Report for the Columbia Basin Climate Change Scenarios Project; Climate Impacts Group: Seattle, WA, USA, 2010. [Google Scholar]
- Surfleet, C.; Tullos, D. Uncertainty assessment of hydrologic response to climate change for the Santiam River, Oregon. Hydrol. Process. 2012. [Google Scholar] [CrossRef]
- Loheide, S.; Lundquist, J. Snowmelt-induced diel fluxes through the hyporheic zone. Water Resour. Res. 2009, 45, 1–9. [Google Scholar] [CrossRef]
- Loheide, S.; Gorelick, S. Riparian hydroecology: A coupled model of the observed interactions between groundwater flow and meadow vegetation patterning. Water Resour. Res. 2007, 43, 1–16. [Google Scholar] [CrossRef]
- Haugo, R.; Halpern, C. Vegetation responses to conifer encroachment in a Western Cascade meadow: A chronosequence approach. Botany 2007, 85, 285–298. [Google Scholar] [CrossRef]
- Stillwater Sciences. A Guide for Restoring Functionality to Mountain Meadows of the Sierra Nevada. 2012. Available online: http://www.stillwatersci.com/resources/2012meadowrestguide.pdf (accessed on 17 November 2014).
- Keppeler, E.; Ziemer, R. Logging effects on streamflow: Water yield and summer low flows at Caspar Creek in northwestern California. Water Resour. Res. 1990, 26, 1669–1679. [Google Scholar] [CrossRef]
- Adams, P.W.; Flint, A.L.; Fredriksen, R.L. Long-term patterns in soil moisture and revegetation after a clearcut of a Douglas-fir forest in Oregon. For. Ecol. Manag. 1991, 41, 249–263. [Google Scholar] [CrossRef]
- Surfleet, C.; Skaugset, A. The effect of timber harvest on summer low flows, Hinkle Creek, Oregon. West. J. Appl. For. 2013, 28, 13–21. [Google Scholar] [CrossRef]
- Mitsch, W.; Gosselink, J. The value of wetlands: Importance of scale and landscape setting. Ecol. Econ. 2000, 35, 25–33. [Google Scholar] [CrossRef]
- California Data Exchange Center. California Department of Water Resources. 2015. Available online: http://cdec.water.ca.gov/misc/DailyPrecip.html (accessed on 29 January 2015).
- Miles, S.; Goudey, C. Ecological Subregions of California Section & Subsection Descriptions; United States Department of Agriculture Forest Service, Pacific Southwest Region: Washington, DC, USA, 1997.
- Soil Survey Staff. Web Soil Survey: Soil Data Mart. USDA-NRCS. Available online: http://websoilsurvey.nrcs.usda.gov (accessed on 15 December 2017).
- United States Department of Agriculture, Natural Resources Conservation Service. Field Indicators of Hydric Soils in the United States; Version 7.0.; Vasilas, L.M., Hurt, G.W., Noble, C.V., Eds.; USDA, NRCS, in Cooperation with the National Technical Committee for Hydric Soils: Washington, DC, USA, 2010.
- Carman, P.C. Flow of Gases through Porous Media; Butterworth Scientific Publications: London, UK, 1956; 182p. [Google Scholar]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- VanOosbree, G. Hydrologic Response from Conifer Removal from an Encroached Meadow. Master’s Thesis, Cal Poly, San Luis Obispo, CA, USA, 2016; 179p. [Google Scholar]
- Sanford, T. The Water Table and Soil Moisture Response Following the Removal of Conifers from an Encroached Meadow. Master’s Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, 2016; 103p. [Google Scholar]
- Rahgozar, M.; Shah, N.; Ross, M. Estimation of evapotranspiration and water budget components using concurrent soil moisture and water table monitoring. ISRN Soil Sci. 2012, 2012, 726806. [Google Scholar] [CrossRef]
- Black, C.; Evans, D.; Dinauer, R. Methods of soil analysis. Am. Soc. Agron. 1965, 9, 653–708. [Google Scholar]
- Telford, W.; Geldart, L.; Sheriff, R. Applied Geophysics, 2nd ed.; Cambridge Press: Cambridge, UK, 1991. [Google Scholar]
- Guderle, M.; Hildebrandt, A. Using Measured Soil Water Contents to Estimate Evapotranspiration and Root Water Uptake Profiles-a Comparative Study. Hydrol. Earth Syst. Sci. 2015, 19, 409–425. [Google Scholar] [CrossRef]
- Penman, H. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. A 1947, 193, 120–145. Available online: http://rspa.royalsocietypublishing.org/ (accessed on 6 January 2018).
- Lucas, R.; Conklin, M.; Goulden, M. Montane meadow evapotranspiration: Implications for restoration and impacts on downstream flow. In Proceedings of the H11E Interacting Physical and Ecological Processes across Terrestrial and Aquatic Systems I Posters, 2015 Fall Meeting, AGU, San Francisco, CA, USA, 14–18 December 2015. [Google Scholar]
- Zhang, L.; Dawes, W.; Walker, G. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.; DeBiase, T.; Qi, Y.; Xu, M.; Goldstein, A. Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environ. Model. Softw. 2005, 20, 783–796. [Google Scholar] [CrossRef] [Green Version]
- Barton, I.J. A Parameterization of the Evaporation from Nonsaturated Surfaces. J. Appl. Meteorol. 1979, 18, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Christensen, L.; Tague, C.; Baron, J. Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystem. Hydrol. Process. 2008, 22, 3576–3588. [Google Scholar] [CrossRef]
- Hammersmark, C.; Dobrowski, S.; Rains, M.; Mount, J. Simulated Effects of Stream Restoration on the Distribution of Wet-Meadow Vegetation. Restor. Ecol. 2010, 18, 882–893. [Google Scholar] [CrossRef]
Marian Meadow | Control Meadow | |
---|---|---|
Coordinates (decimal degrees, latitude and longitude) | 40.2636 N 121.3157 W | 40.2639 N 121.3945 W |
Area of meadow (ha) | 18.2 | 8.1 |
Elevation (m) | 1370 | 1460 |
Surface soil texture (%sand-%silt-%clay) | Clay (32-26-42) | Clay Loam (47-16-37) |
Soil porosity at 30 cm depth | 47% | 42% |
Bulk density at 30 cm depth | 1.40 g/cm3 | 1.53 g/cm3 |
Hydraulic conductivity (2 m) | 60 m/day | 35 m/day |
Depth to a partially confining layer | ≥12 m | Below detection limit of electrical resistivity tomography (ERT) |
Marian Meadow | Control Meadow | |||||
---|---|---|---|---|---|---|
2014 WY | 2015 WY | 2016 WY | 2014 WY | 2015 WY | 2016 WY | |
average | 1.23 | 1.47 | 0.65 | 1.12 | 1.32 | 0.67 |
minimum | 0.29 | 0.61 | 0.12 | 0.05 | 0.45 | 0.06 |
maximum | 2.48 | 2.78 | 1.3 | 2.42 | 2.30 | 1.45 |
Days <0.7 m | 46 | 7 | 85 | 53 | 24 | 71 |
Days <0.3 m | 4 | 0 | 50 | 25 | 0 | 50 |
Location | WY | P (mm) | QSEOF (mm) | I (mm) | Iwt (mm) | ETS (mm) | Ic (mm) | ET (mm) | Error (mm) |
---|---|---|---|---|---|---|---|---|---|
Pre-Marian | 2014 | 489 | 0 | 280 | 22 | 285 | 172 | 457 | 15 |
Pre-Marian | 2015 | 636 | 107 | 267 | 40 | 268 | 214 | 482 | 9 |
Post-Marian | 2016 | 931 | 433 | 308 | 90 | 318 | 107 | 425 | −7 |
Control | 2014 | 489 | 75 | 255 | 79 | 286 | 74 | 360 | 6 |
Control | 2015 | 636 | 102 | 267 | 103 | 258 | 87 | 345 | 78 |
Control | 2016 | 931 | 374 | 333 | 42 | 288 | 107 | 395 | 74 |
Location | WY | P (mm) | QSEOF (%) | ΔS (%) | ET (%) | Error (%) |
---|---|---|---|---|---|---|
Pre-Marian | 2014 | 489 | 0% | 3% | 94% | −3% |
Pre-Marian | 2015 | 636 | 17% | 6% | 76% | −1% |
Post-Marian | 2016 | 931 | 47% | 9% | 46% | 2% |
Control | 2014 | 489 | 15% | 10% | 74% | −1% |
Control | 2015 | 636 | 16% | 18% | 54% | −12% |
Control | 2016 | 931 | 40% | 9% | 42% | −9% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surfleet, C.; Sanford, T.; VanOosbree, G.; Jasbinsek, J. Hydrologic Response of Meadow Restoration the First Year Following Removal of Encroached Conifers. Water 2019, 11, 428. https://doi.org/10.3390/w11030428
Surfleet C, Sanford T, VanOosbree G, Jasbinsek J. Hydrologic Response of Meadow Restoration the First Year Following Removal of Encroached Conifers. Water. 2019; 11(3):428. https://doi.org/10.3390/w11030428
Chicago/Turabian StyleSurfleet, Christopher, Thomas Sanford, Gregory VanOosbree, and John Jasbinsek. 2019. "Hydrologic Response of Meadow Restoration the First Year Following Removal of Encroached Conifers" Water 11, no. 3: 428. https://doi.org/10.3390/w11030428
APA StyleSurfleet, C., Sanford, T., VanOosbree, G., & Jasbinsek, J. (2019). Hydrologic Response of Meadow Restoration the First Year Following Removal of Encroached Conifers. Water, 11(3), 428. https://doi.org/10.3390/w11030428