Algal-Bacterial Symbiosis System Treating High-Load Printing and Dyeing Wastewater in Continuous-Flow Reactors under Natural Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algae Species and Sludge
2.2. Wastewater
2.3. Experimental Setup and Operation Conditions
2.4. Analytical Methods
2.4.1. Water Quality Analysis
2.4.2. Microbial Activity Analysis and Algal Biomass Estimation
2.4.3. Data Analysis
3. Results and Discussion
3.1. ABS System Startup
3.2. Performance of the ABS System under Different Hydraulic Retention Times
3.3. Performance of the ABS System under Different Aeration Conditions
3.4. Analysis of Effluent Organic Matter and Colour Quality
3.5. Advantages of Algae Addition
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ji, X.; Jiang, M.; Zhang, J.; Jiang, X.; Zheng, Z. The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater. Bioresour. Technol. 2018, 247, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Boelee, N.C.; Temmink, H.; Janssen, M.; Buisman, C.J.N.; Wijffels, R.H. Balancing the organic load and light supply in symbiotic microalgal-bacterial biofilm reactors treating synthetic municipal wastewater. Ecol. Eng. 2014, 64, 213–221. [Google Scholar] [CrossRef]
- Wang, M.; Kuo-Dahab, W.C.; Dolan, S.; Park, C. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp and Micractinium sp., in wastewater treatment. Bioresour. Technol. 2014, 154, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.S.M.; Cai, W.; Zhao, Z.; Zhang, Z.; Shimizu, K.; Lei, Z.; Lee, D.-J. Stability of algal-bacterial granules in continuous-flow reactors to treat varying strength domestic wastewater. Bioresour. Technol. 2017, 244, 225–233. [Google Scholar] [CrossRef] [PubMed]
- De-Bashan, L.E.; Moreno, M.; Hernandez, J.P.; Bashan, Y. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res. 2002, 36, 2941–2948. [Google Scholar] [CrossRef]
- Munoz, R.; Guieysse, B. Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Res. 2006, 40, 2799–2815. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, J.; Krustok, I.; Nehrenheim, E.; Carlsson, B. A simple model for algae-bacteria interaction in photo-bioreactors. Algal Res. 2016, 19, 155–161. [Google Scholar] [CrossRef]
- Su, Y.; Mennerich, A.; Urban, B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res. 2011, 45, 3351–3358. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yan, C.; Li, Z. Microalgal cultivation with biogas slurry for biofuel production. Bioresour. Technol. 2016, 220, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-C.; Zuo, W.; Tian, Y.; Sun, N.; Wang, Z.-W.; Zhang, J. Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors. Bioresour. Technol. 2016, 222, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Valigore, J.M.; Gostomski, P.A.; Wareham, D.G.; O’Sullivan, A.D. Effects of hydraulic and solids retention times on productivity and settleability of microbial (microalgal-bacterial) biomass grown on primary treated wastewater as a biofuel feedstock. Water Res. 2012, 46, 2957–2964. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yang, X.; Cai, W.; Lei, Z.; Shimizu, K.; Zhang, Z.; Utsumi, M.; Lee, D.-J. Response of algal-bacterial granular system to low carbon wastewater: Focus on granular stability, nutrients removal and accumulation. Bioresour. Technol. 2018, 268, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Xi, L.; Liu, D.; Huang, W.; Lei, Z.; Zhang, Z.; Huang, W. Effects of light intensity on oxygen distribution, lipid production and biological community of algal-bacterial granules in photo-sequencing batch reactors. Bioresour. Technol. 2018, 272, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, A.V.; Figueroa, M.; Arrojo, B.; Mosquera-Corral, A.; Campos, J.L.; Garcia-Torriello, G.; Mendez, R. Aerobic granular SBR systems applied to the treatment of industrial effluents. J. Environ. Manag. 2012, 95, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Huang, W.; Zhang, C.; Feng, S.; Zhang, Z.; Lei, Z.; Sugiura, N. Effect of TiO2 nanoparticles on aerobic granulation of algal-bacterial symbiosis system and nutrients removal from synthetic wastewater. Bioresour. Technol. 2015, 187, 214–220. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Chen, L.; Zhang, S.; Chen, R.; Wang, H.; Zhang, W.; Song, J. Natural sunlight induced rapid formation of water-born algal-bacterial granules in an aerobic bacterial granular photo-sequencing batch reactor. J. Hazard. Mater. 2018, 359, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Markou, G.; Vandamme, D.; Muylaert, K. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Res. 2014, 65, 186–202. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.A.; Ng, W.J. Feasibility of wastewater treatment using the activated-algae process. Bioresour. Technol. 1992, 40, 205–208. [Google Scholar] [CrossRef]
- Van den Hende, S.; Carre, E.; Cocaud, E.; Beelen, V.; Boon, N.; Vervaeren, H. Treatment of industrial wastewaters by microalgal bacterial flocs in sequencing batch reactors. Bioresour. Technol. 2014, 161, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Khataee, A.; Dehghan, G.; Zarei, M.; Fallah, S.; Niaei, G.; Atazadeh, I. Degradation of an azo dye using the green macroalga Enteromorpha sp. Chem. Ecol. 2013, 29, 221–233. [Google Scholar] [CrossRef]
- Daneshvar, N.; Ayazloo, M.; Khataee, A.R.; Pourhassan, M. Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresour. Technol. 2007, 98, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- AKhataee, R.; Dehghan, G.; Zarei, M.; Ebadi, E.; Pourhassan, M. Neural network modeling of biotreatment of triphenylmethane dye solution by a green macroalgae. Chem. Eng. Res. Des. 2011, 89, 172–178. [Google Scholar] [CrossRef]
- Kousha, M.; Daneshvar, E.; Sohrabi, M.S.; Jokar, M.; Bhatnagar, A. Adsorption of acid orange II dye by raw and chemically modified brown macroalga Stoechospermum marginatum. Chem. Eng. J. 2012, 192, 67–76. [Google Scholar] [CrossRef]
- Xie, L.; Zhou, L.; Liu, T.; Xu, X. Degradation of Disperse blue 2BLN by oleaginous C. sorokiniana XJK. RSC Adv. 2016, 6, 106935–106944. [Google Scholar] [CrossRef]
- China Environmental Protection Bureau (CEPB). Standard Methods for Examination of Water and Wastewater; Chinese Environmental Science Press: Beijing, China, 2002. [Google Scholar]
- Lee, C.S.; Lee, S.-A.; Ko, S.-R.; Oh, H.-M.; Ahn, C.-Y. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Res. 2015, 68, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Gutzeit, G.; Lorch, D.; Weber, A.; Engels, M.; Neis, U. Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment. Water Sci. Technol. 2005, 52, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Mclean, B.M.; Baskaran, K.; Connor, M.A. The use of algal-bacterial biofilms to enhance nitrification rates in lagoons: Experience under laboratory and pilot-scale conditions. Water Sci. Technol. 2000, 42, 187–194. [Google Scholar] [CrossRef]
- Huang, W.; Bing, L.; Chao, Z.; Zhang, Z.; Lei, Z.; Lu, B.; Zhou, B. Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors. Bioresour. Technol. 2015, 179, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Ngo, H.H.; Guo, W.S.; Liu, Y.; Wang, D.; Song, S.; Wei, W.; Nghiem, L.D.; Ni, B.J. A novel mechanistic model for nitrogen removal in algal-bacterial photo sequencing batch reactors. Bioresour. Technol. 2018, 267, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.C.; Tian, Y.; He, Z.W.; Zuo, W.; Zhang, J. Performance and mechanism of a novel algal-bacterial symbiosis system based on sequencing batch suspended biofilm reactor treating domestic wastewater. Bioresour. Technol. 2018, 265, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Humenik, F.J.; Hanna, G.P. Algal-Bacterial Symbiosis for Removal and Conservation of Wastewater Nutrients. Journal (Water Pollut. Control Fed.) 1971, 43, 580–594. [Google Scholar]
- Corsino, S.F.; Campo, R.; Di Bella, G.; Torregrossa, M.; Viviani, G. Study of aerobic granular sludge stability in a continuous-flow membrane bioreactor. Bioresour. Technol. 2016, 200, 1055–1059. [Google Scholar] [CrossRef] [PubMed]
- Guieysse, B.; Borde, X.; Muñoz, R.; Hatti-Kaul, R.; Nugier-Chauvin, C.; Patin, H.; Bo, M. Influence of the initial composition of algal-bacterial microcosms on the degradation of salicylate in a fed-batch culture. Biotechnol. Lett. 2002, 24, 531–538. [Google Scholar] [CrossRef]
- Zhu, M.H. Instrumental Analysis; Higher Education Press: Beijing, China, 2000. [Google Scholar]
Sludge Activity Index | Mlss (Mixed Liquid Suspended Solids) | SV % (Settling Velocity) | SVI (Switch Virtual Interface) |
---|---|---|---|
Content | 3000 mg/L | 24 | 80 |
Wastewater Quality | COD (mg/L) | NH4+-N (mg/L) | TP (mg/L) | pH | Colour (times) |
---|---|---|---|---|---|
Regulating pool | 650–750 | 20–30 | 5.0–6.5 | 8.5–10.5 | 500–600 |
Secondary settling pool | 160–220 | 5–10 | 4.0–4.5 | 7.5–8.5 | 120–160 |
CAS System | ABS System | |||||
---|---|---|---|---|---|---|
Aeration (L/min) | 0.15–0.2 | 0.4–0.5 | 0.7–0.8 | 0.15–0.2 | 0.4–0.5 | 0.7–0.8 |
DO (mg/L) ± 0.2 | 0.45 | 2.05 | 3.25 | 0.85 | 2.85 | 3.95 |
Activity Index | 12th Day | 14th Day | 16th Day | 18th Day | 20th Day |
---|---|---|---|---|---|
MLSS (mg/L) | 3100 | 3200 | 3300 | 3500 | 3400 |
SVI | 100 | 120 | 125 | 135 | 135 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.; Cao, P.; Xu, X.; Ye, B. Algal-Bacterial Symbiosis System Treating High-Load Printing and Dyeing Wastewater in Continuous-Flow Reactors under Natural Light. Water 2019, 11, 469. https://doi.org/10.3390/w11030469
Lin C, Cao P, Xu X, Ye B. Algal-Bacterial Symbiosis System Treating High-Load Printing and Dyeing Wastewater in Continuous-Flow Reactors under Natural Light. Water. 2019; 11(3):469. https://doi.org/10.3390/w11030469
Chicago/Turabian StyleLin, Chao, Peng Cao, Xiaolin Xu, and Bangce Ye. 2019. "Algal-Bacterial Symbiosis System Treating High-Load Printing and Dyeing Wastewater in Continuous-Flow Reactors under Natural Light" Water 11, no. 3: 469. https://doi.org/10.3390/w11030469
APA StyleLin, C., Cao, P., Xu, X., & Ye, B. (2019). Algal-Bacterial Symbiosis System Treating High-Load Printing and Dyeing Wastewater in Continuous-Flow Reactors under Natural Light. Water, 11(3), 469. https://doi.org/10.3390/w11030469