Comparative Study of Balancing SRT by Using Modified ASM2d in Control and Operation Strategy at Full-Scale WWTP
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Extracting Experimental Data and Modelling Study
2.3. SRT Development
2.4. Analytical Methods
3. Results and Discussion
3.1. Calibration of ASM2d Using the Results of Batch Experiments
3.2. Modified ASM2d Model Components and Parameter Identification
3.3. Balancing SRT by Using Modified ASM2d in Operation Strategy of Full-Scale WWTP
4. Conclusions
- (1)
- Evaluation of the OUR profile could be recommended as a method for COD characterisation
- (2)
- A novel procedure, based on standard batch tests with parallel (SWW and after c-f) samples was adapted for the evaluation of the OURs fractionation in the activated sludge systems.
- (3)
- In addition to the experimental observations, the wastewater characteristics (i.e., the soluble, colloidal, and particulate fractions) and loading of biodegradable organic compounds (relatively low Xs = 11% in Malaga compared to Gdańsk—almost four times higher) could affect the performance of OURs as well as several mechanisms during the process: temperature, industrial wastewater inflow, and/or DO, etc. at both plants.
- (4)
- This comparative study was proved that the characteristic of municipal wastewater could be relatively different, which has a crucial significance in case of carbon deficient for a control of WWTP and cost-effective global solution in balancing with a proper SRT and modeling simulations studies.
- (5)
- A complex modified ASM2d model, taking many different processes into account, needed the calibration and validation of a large number of model parameters and initial concentrations of model components. Considering a two-step hydrolysis process with a new variable (i.e., rapidly hydrolysable substrate, XSH), the two hydrolysable substrate fractions (i.e., XS and XSH) could be found to be an important issue for SRT balancing when the availability of carbon source as slowly and/or readily biodegradable substrate limits the microbial transformations in the activated sludge systems and has a direct impact on the control and operation strategy for high cost-effective WWTPs.
- (6)
- The SRT determination methods all give similar results under stable operational conditions, even the simple hydraulic method which is based on continuous on-line flow rate measurements. It gives an opportunity to implement an algorithm to automatically control SRT and sludge wastage from the system according to the new ASM2d model but further computer simulation studies should be performed in full-scale WWTPs.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
OUR | oxygen uptake rate |
AS | activated sludge |
ASM | activated sludge model |
ASM2d | activated sludge model 2d |
WWTP | wastewater treatment plant |
References
- Henze, M.; Gujer, W.; Mino, T.; Van Loosdrecht, M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3; IWA Publishing: London, UK, 2000. [Google Scholar]
- Damayanti, A.; Ujang, Z.; Salim, M.R.; Olsson, G.; Sulaiman, A.Z. Respirometric analysis of activated sludge models from palm oil mill effluent. Bioresour. Technol. 2010, 101, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Hauduc, H.; Takacs, I.; Smith, S.; Szabo, A.; Murthy, S.; Daigger, G.T.; Sperandio, M. A dynamic physicochemical model for chemical phosphorus removal. Water Res. 2013, 73, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Mannina, G.; Cosenza, A.; Vanrolleghem, P.A.; Viviani, G. A practical protocol for calibration of nutrient removal wastewater treatment models. J. Hydroinform. 2011, 13, 575–595. [Google Scholar] [CrossRef]
- Insel, G.; Güder, B.; Güneş, G.; Cokgor, E.U. Are standard wastewater treatment plant design methods suitable for any municipal wastewater? Water Sci. Technol. 2012, 66, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Vitanza, R.; Colussi, I.; Cortesi, A.; Gallo, V. Implementing a respirometry-based model into BioWin software to simulate wastewater treatment plant operations. J. Water Process Eng. 2015, 9, 267–275. [Google Scholar] [CrossRef]
- Petersen, B.; Gernaey, K.; Henze, M.; Vanrolleghem, P.A. Evaluation of an ASM1 model calibration procedure on a municipal-industrial wastewater treatment plant. J. Hydroinf. 2002, 4, 15–38. [Google Scholar] [CrossRef]
- Melcer, H. Methods of Wastewater Characterization in Activated Sludge Modelling; Water Environment Research Foundation, IWA Publishing: London, UK, 2003. [Google Scholar]
- Mhlanga, F.T.; Brouckaert, C.J. Characterisation of wastewater for modelling of wastewater treatment plants receiving industrial effluent. Water SA 2013, 39, 403–407. [Google Scholar] [CrossRef]
- Orhon, D.; Çokgör, E.U. COD Fractionation in Wastewater Characterization—The State of the Art. J. Chem. Technol. Biotechnol. 1997, 68, 283–293. [Google Scholar] [CrossRef]
- Vital-Jacome, M.; Dochain, D.; Thalasso, F. Microrespirometric model calibration applied to wastewater processes. Biochem. Eng. J. 2017, 128, 168–177. [Google Scholar] [CrossRef]
- Szaja, A.; Łagód, G.; Jaromin-Glen, K.; Montusiewicz, A. The Effect of Bioaugmentation with Archaea on the Oxygen Uptake Rate in a Sequencing Batch Reactor. Water 2018, 10, 575. [Google Scholar] [CrossRef]
- Ekama, G.A.; Marais, G.V.R. Dynamic behavior of the activated sludge process. J. Water Pollut. Control Fed. 1979, 51, 534–556. [Google Scholar]
- Henze, M. Characterization of wastewater for modelling of activated sludge processes. Water Sci. Technol. 1992, 25, 1–15. [Google Scholar] [CrossRef]
- Ekama, G.A.; Dold, P.L.; Marais, G.V.R. Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems. Water Sci. Technol. 1986, 18, 91–114. [Google Scholar] [CrossRef]
- Vollertsen, J.; Hvitved-Jacobsen, T. Biodegradability of wastewater—A method for COD-fractionation. Water Sci. Technol. 2002, 45, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Szaja, A.; Aguilar, J.A.; Łagód, G. Estimation of chemical oxygen demand fractions of municipal wastewater by respirometric method—Case study. Ann. Set. Environ. Prot. Rocz. Ochr. Środ. 2015, 17, 289–299. [Google Scholar]
- Agathos, S.; Reineke, W. Biotechnology for the Environment: Wastewater Treatment and Modeling, Waste Gas Handling; Springer-Science + Business Media, B.V.: Amsterdam, The Netherland, 2003. [Google Scholar]
- Choi, Y.-Y.; Baek, S.-R.; Kim, J.-I.; Choi, J.-W.; Hur, J.; Lee, T.-U.; Park, C.-J.; Lee, B.J. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge. Water 2017, 9, 409. [Google Scholar] [CrossRef]
- Drewnowski, J.; Makinia, J. Modeling hydrolysis of slowly biodegradable organic compounds in biological nutrient removal activated sludge systems. Water Sci. Technol. 2013, 67, 2067–2074. [Google Scholar] [CrossRef] [PubMed]
- Henze, M.; Grady, C.P.L., Jr.; Gujer, W.; Marais, G.V.R.; Matsuo, T. Activated Sludge Model No. 1. IAWPRC Scientific and Technical Report No. 1; IAWPRC: London, UK, 1987. [Google Scholar]
- DWA-A 131—Design of Single-Stage Activated Sludge Systems; GFA Publisher for Wastewater, Waste and Water Protection: Hennef, Germany, 2016.
- Smolders, G.J.; van der Meij, J.; van Loosdrecht, M.C.; Heijnen, J.J. A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process. Biotechnol. Bioeng. 1995, 47, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Tsuneda, S.; Ohno, T.; Soejima, K.; Hirata, A. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor. Biochem. Eng. J. 2006, 27, 191–196. [Google Scholar] [CrossRef]
- Tränckner, J.; Koegst, T.; Cramer, M.; Gießler, M.; Richter, B.; Müther, F. Phosphorus Removal in WWTP bis 10.000 Population Equivalent in Mecklenburg-Vorpommern; Ministry of Agriculture, the Environmental and Consumer Protection LUNG: Schwerin, Germany, 2016. (In German) [Google Scholar]
- Shahzad, M.; Khan, S.H.; Paul, P. Influence of Temperature on the Performance of a Full-Scale Activated Sludge Process Operated at Varying Solids Retention Times Whilst Treating Municipal Sewage. Water 2015, 7, 855–867. [Google Scholar] [CrossRef]
- Drewnowski, J. The impact of slowly biodegradable organic compounds on the oxygen uptake rate in activated sludge systems. Water Sci. Technol. 2014, 69, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
- Von Sperling, M. Wastewater Characteristics, Treatment and Disposal; IWA Publishing: London, UK, 2007. [Google Scholar]
- Hvitved-Jacobsen, T.; Vollertsen, J.; Matos, J.S. The sewer as a bioreactor—A dry weather approach. Water Sci. Technol. 2002, 45, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Mąkinia, J. Performance Prediction of Full-Scale Biological Nutrient Removal Systems Using Complex Activated Sludge Models; Veröffentlichungen des Institutes für Siedlungswasserwirtschaft und Abfalltechnik der Universität Hannover: Hannover, Germany, 2006; pp. 1–334. [Google Scholar]
- Nelder, J.A.; Mead, R.A. Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Dassanayake, C.Y. Use of Oxygen Uptake Rate (OUR) as a Tool to Start Up, Predict Process Instability, Perform Rapid Process Optimization, and Monitor Nitrifier Population Dynamics in Biological Nitrogen Removal (BNR) Systems—Teaching an Old Dog New Tricks. Texas WET 2007, 24, 16–22. [Google Scholar]
- Vaccari, D.A.; Fagedes, T.; Longtin, J. Calculation of mean cell residence time for unsteady-state activated sludge systems. Biotechnol. Bioeng. 1985, 27, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Takacs, I. Experiments in Activated Sludge Modelling. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2008. [Google Scholar]
- Garrett, M.T. Hydraulic control of activated sludge growth rate. Sewage Indust. Wastes 1958, 30, 252–261. [Google Scholar]
- Mamais, D.; Jenkins, D.; Prrr, P. A rapid physical-chemical method for the determination of readily biodegradable soluble COD in municipal wastewater. Water Res. 1993, 27, 195–197. [Google Scholar] [CrossRef]
- Roeleveld, P.J.; van Loosdrecht, M.C. Experience with guidelines for wastewater characterisation in The Netherlands. Water Sci. Technol. 2002, 45, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Ginestet, P.; Maisonnier, A.; Spérandio, M. Wastewater COD characterization: Biodegradability of physico-chemical fractions. Water Sci. Technol. 2002, 45, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, V.; Urbain, V.; Buckley, C.A. Characterization of wastewater and activated sludge from European municipal wastewater treatment plants using the nur test. Water Sci Technol. 1998, 38, 308–310. [Google Scholar] [CrossRef]
- Balbierz, P.; Knap, M. Comparison of methods for solids retention time determination and control. E3S Web Conf. 2017, 22, 00008. [Google Scholar] [CrossRef]
- Puig, S.; van Loosdrecht, M.C.M.; Colprim, J.; Meijer, S.C.F. Data evaluation of full-scale wastewater treatment plants by mass balance. Water Res. 2008, 42, 4645–4655. [Google Scholar] [CrossRef] [PubMed]
- Brdjanovic, D.; Van Loosdrecht, M.C.M.; Versteeg, P.; Hooijmans, C.M.; Alaerts, G.J.; Heijnen, J.J. Modeling COD, N and P removal in a full-scale WWTP Haarlem Waarderpolder. Water Res. 2000, 34, 846–858. [Google Scholar] [CrossRef]
- Meijer, S.C.F.; van Loosdrecht, M.C.M.; Heijnen, J.J. Metabolic modelling of full-scale biological nitrogen and phosphorus removing wwtp’s. Water Res. 2001, 35, 2711–2723. [Google Scholar] [CrossRef]
- Greenwood, S.; Anderson, C.; Rieth, M.; Stein, T. Constant SRT Calculated from Liquid Flows Improves BNR Activated Sludge Performance; Central States Water Environment Association: Crystal Lake, IL, USA, 2002; Available online: http://www.cswea.org/papers (accessed on 10 December 2017).
- Van Veldhuizen, H.M.; van Loosdrecht, M.C.M.; Heijnen, J.J. Modelling biological phosphorus and nitrogen removal in a full scale activated sludge process. Water Res. 1999, 33, 3459–3468. [Google Scholar] [CrossRef]
- Henze, M.; Gujer, W.; Mino, T.; Matsuo, T.; Wetzel, M.C.; Marais, G.V.R.; van Loosdrecht, M.C.M. Activated Sludge Process Model No. 2d. Water Sci. Technol. 1999, 39, 165–182. [Google Scholar] [CrossRef]
- Ramdani, A.; Dold, P.; Déléris, S.; Lamarre, D.; Gadbois, A.; Comeau, Y. Biodegradation of the endogenous residue of activated sludge. Water Res. 2010, 44, 2179–2188. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M. Aspects of Energy Management in Wastewater and Sludge Treatment; Rostocker Abwassertagung—Infrastructure and Energy Management, University of Rostock: Rostock, Germany, 2014. (In German) [Google Scholar]
- Imhoff, K. Handbook of Municipal Drainage; Oldenbourg Industrieverlag: München, Germany, 2007. (In German) [Google Scholar]
- Hvitved-Jacobsen, T.; Vollertsen, J.; Nielsen, P.H. A Process and Model Concept for Microbial Wastewater Transformations in Gravity Sewers. Water Sci. Technol. 1998, 37, 233–241. [Google Scholar] [CrossRef]
- Henze, M.; Kristensen, G.H.; Strube, R. Rate-capacity characterization of wastewater for nutrient removal processes. Water Sci. Technol. 1994, 29, 101–107. [Google Scholar] [CrossRef]
- Bjerre, H.L.; Hvitved-Jacobsen, T.; Teichgräber, B.; Heesen, D.T. Experimental procedures characterizing transformations of wastewater organic matter in the Emscher River, Germany. Water Sci. Technol. 1995, 31, 201–212. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Stensel, H.D.; Tsuchihashi, R.; Burton, F.L.; Franklin, L.; Abu-Orf, M.; Bowden, G.; Pfrang, W. Wastewater Engineering: Treatment and Resource Recovery; Metcalf & Eddy, Ed.; McGraw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Makinia, J. Mathematical Modelling and Computer Simulation of Activated Sludge Systems; IWA Publishing: London, UK; New York, NY, USA, 2010. [Google Scholar]
- Ekama, G.A. The role and control of sludge age in biological nutrient removal activated sludge systems. Water Sci. Technol. 2010, 61, 1645–1652. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Gdansk | Malaga | Parameter | Unit | Gdansk | Malaga |
---|---|---|---|---|---|---|---|
Concentrations in settled wastewater: | Operating parameters: | ||||||
COD/CODsol | gCOD/m3 | 546/178 | 375/129 | QINF | m3/d | 21,189 | 157,055 |
BOD5 | gBOD/m3 | 248 | 238 | QMLR1 (anox 1–anaer) | m3/d | 30,240 | - |
Ntot. | gN/m3 | 71.2 | 55.3 | QMLR2 (aer–anox 2) | m3/d | 92,544 | - |
N-NH4+ | gN/m3 | 49.3 | 26.3 | QRAS | m3/d | 20,112 | 133,011 |
Ptot. | gP/m3 | 14.6 | 7.7 | Process temperature | °C | 19.6 | 27.5 |
P-PO4- | gP/m3 | 9.0 | 4.9 | SRT | d | 14.6 | 2.54 |
Concentrations in secondary effluent: | Biomass characteristics: | ||||||
COD | gCOD/m3 | 33.0 | 57 | MLSS | g/m3 | 3110 | 2339 |
“Soluble” COD | gCOD/m3 | 30.3 | 37 | MLVSS/MLSS (iVT) | - | 0.712 | 0.901 |
Ntot. | gN/m3 | 9.9 | 41.3 | P of MLSS (iPT) | gP/g | 0.055 | - |
N-NH4+ | gN/m3 | 1.00 | 14 | ||||
N-NO3- | gN/m3 | 7.4 | 0.4 | ||||
Ptot. | gP/m3 | 0.39 | 3.8 | ||||
P-PO4- | gP/m3 | 0.09 | 2.7 |
Gdańsk | Malaga | ||||
---|---|---|---|---|---|
WWTP | Component | Concentration | COD | Concentration | COD |
g COD/m3 | % | g COD/m3 | % | ||
Settled wastewater fractionation | SI | 36.1 | 4.5 | 13.0 | 3.4 |
XI | 257.4 | 32.4 | 217.5 | 50.8 | |
SS | 150.9 | 19.0 | 132.8 | 34.2 | |
XS | 349.6 | 44.1 | 45.3 | 11.6 | |
Total COD | 794.0 | 100 | 395.7 | 100 |
Symbol | Unit | Default Value [38] | Calibrated Value at Both Studied Plants |
---|---|---|---|
SW/SWc-f | |||
Active Heterotrophic Biomass: | |||
YPO4 | g P/g COD | 0.4 | 0.32 |
YH | g COD/g COD | 0.625 | 0.68 |
Hydrolysis: | |||
Kh | d−1 | 3.0 | 2.5 |
ηfe | - | 0.4 | 0.1 |
Kx | - | 0.1 | 0.2 |
“Ordinary” heterotrophic organisms (XH): | |||
μH | d−1 | 6.0 | 3.0 |
Autotrophic (nitrifying) organisms (XA): | |||
μA | d−1 | 1.0 | 1.35 |
KNH4,A | g N/m3 | 1.0 | 1.3 |
KPO4,A | g P/m3 | 0.01 | 0.001 |
Phosphate accumulating organisms (XPAO): | |||
qPHA | d−1 | 3.0 | 6.0 |
qPP | d−1 | 1.5 | 4.5 |
ηNO3,PAO | - | 0.6 | 0.5 |
KPP | g COD/g COD | 0.01 | 0.02 |
KSA,PAO | g COD/m3 | 4.0 | 1.0 |
KIPP | g P/g COD | 0.02 | 0.1 |
KPHA | g COD/g COD | 0.01 | 0.2 |
KNH4 | g N/m3 | 0.05 | 0.01 |
KP | g P/m3 | 0.01 | 0.001 |
Symbol | Parameter | Value [Unit] | Literature |
---|---|---|---|
Biomass Heterotrophic/Decay Rate: | |||
YH | Heterotrophic Yield | 0.67 [g COD/g COD] | [22] |
b | Decay Rate | 0.17 [d−1] | [22] |
Biomass Heterotrophic/Decay Content: | |||
XH | Organic Biomass Fraction | 92 [%] | [22,47] |
XI | Inert Biomass Fraction (Decay) | 20 [%] | [22] |
Biomass Characteristics: | |||
MLSS | Mixed Liquor Suspended Solid | 50 [g/PE d] | [48] |
XMIN | Mineral dry matter content | 20 [g/PE d] | [49] |
Chemical Oxygen Demand Fraction: | |||
CODT | Total Chemical Oxygen Demand | 120 [g COD/PE d] | [22] |
ηCOD/VSS,XH | Particulate Biomass COD-fraction | 1.45 [g COD/g VSS] | [22] |
ηCOD/VSS,Xi | Particulate Inert COD-fraction | 1.6 [g COD/g VSS] | [22] |
Temperature: | |||
ηT | Temperature Factor | 1.072 | [22] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drewnowski, J.; Mąkinia, J.; Szaja, A.; Łagód, G.; Kopeć, Ł.; Aguilar, J.A. Comparative Study of Balancing SRT by Using Modified ASM2d in Control and Operation Strategy at Full-Scale WWTP. Water 2019, 11, 485. https://doi.org/10.3390/w11030485
Drewnowski J, Mąkinia J, Szaja A, Łagód G, Kopeć Ł, Aguilar JA. Comparative Study of Balancing SRT by Using Modified ASM2d in Control and Operation Strategy at Full-Scale WWTP. Water. 2019; 11(3):485. https://doi.org/10.3390/w11030485
Chicago/Turabian StyleDrewnowski, Jakub, Jacek Mąkinia, Aleksandra Szaja, Grzegorz Łagód, Łukasz Kopeć, and José Alonso Aguilar. 2019. "Comparative Study of Balancing SRT by Using Modified ASM2d in Control and Operation Strategy at Full-Scale WWTP" Water 11, no. 3: 485. https://doi.org/10.3390/w11030485
APA StyleDrewnowski, J., Mąkinia, J., Szaja, A., Łagód, G., Kopeć, Ł., & Aguilar, J. A. (2019). Comparative Study of Balancing SRT by Using Modified ASM2d in Control and Operation Strategy at Full-Scale WWTP. Water, 11(3), 485. https://doi.org/10.3390/w11030485