A Model-Based Engineering Methodology and Architecture for Resilience in Systems-of-Systems: A Case of Water Supply Resilience to Flooding
Abstract
:1. Introduction
1.1. Resilience in the Water Sector
1.2. Systems-of-Systems (SoS) in the Context of Water Supply/Flooding
- Operational independence of the elements: The constituent systems (CSs) can operate independently.
- Managerial independence of the elements: The constituent systems are acquired separately by different managerial entities.
- Evolutionary development: An SoS evolves over time, developing its capabilities as the constituent systems are changed, added or removed.
- Emergent behaviour: The SoS itself offers additional services above and beyond the capabilities of the constituent systems. However, it can also exhibit unexpected and potentially damaging behaviours.
- Geographic distribution: The geographic extent of the constituent systems is large.
2. Materials and Methods
The SoS Resilience Framework/Methodology
3. Case Study Results
3.1. Case Study Overview
3.2. Case Study Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Monk, A.; Howard, S. Methods & tools: The rich picture: A tool for reasoning about work context. Interactions 1998, 5, 21–30. [Google Scholar]
- Jenkins, G.J.; Murphy, J.M.; Sexton, D.M.H.; Lowe, J.A.; Jones, P.; Kilsby, C.G. UK Climate Projections: Briefing Report; Met Office Hadley Centre: Exeter, UK, June 2009; ISBN 9781906360023.
- HM Government UK Climate Change Risk Assessment; HM Government: London, UK, 2017; p. 24.
- Alessandra Scotto di Santolo UK Weather Warning: Expert Warns UK Heatwave is First of Many as Summers Will Get HOTTER. EXPRESS. 2018. Available online: https://www.express.co.uk/news/weather/997034/UK-weather-warning-climate-change-summer-heatwave-latest (accessed on 15 August 2018).
- Office for National Statistics. Overview of the UK Population; Overv. UK Popul.; Office for National Statistics: Newport, UK, July 2017; pp. 1–17.
- Hosseini, S.; Barker, K.; Ramirez-Marquez, J.E. A review of definitions and measures of system resilience. Reliab. Eng. Syst. Saf. 2016, 145, 47–61. [Google Scholar] [CrossRef]
- Tran, H.T.; Balchanos, M.; Domerçant, J.C.; Mavris, D.N. A framework for the quantitative assessment of performance-based system resilience. Reliab. Eng. Syst. Saf. 2017, 158, 73–84. [Google Scholar] [CrossRef]
- Bhamra, R.; Dani, S.; Burnard, K. Resilience: The concept, a literature review and future directions. Int. J. Prod. Res. 2011, 49, 5375–5393. [Google Scholar] [CrossRef]
- Woods, D. Four Concepts for resilience and the Implications for the Future of Resilience Engineering. Reliab. Eng. Syst. Saf. 2015, 141, 5–9. [Google Scholar] [CrossRef]
- Righi, A.W.; Saurin, T.A.; Wachs, P. A systematic literature review of resilience engineering: Research areas and a research agenda proposal. Reliab. Eng. Syst. Saf. 2015, 141, 142–152. [Google Scholar] [CrossRef]
- Adjetey-Bahun, K.; Birregah, B.; Châtelet, E.; Planchet, J.L. A model to quantify the resilience of mass railway transportation systems. Reliab. Eng. Syst. Saf. 2016, 153, 1–14. [Google Scholar] [CrossRef]
- Bergström, J.; Van Winsen, R.; Henriqson, E. On the rationale of resilience in the domain of safety: A literature review. Reliab. Eng. Syst. Saf. 2015, 141, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Patriarca, R.; Falegnami, A.; Costantino, F.; Bilotta, F. Resilience engineering for socio-technical risk analysis: Application in neuro-surgery. Reliab. Eng. Syst. Saf. 2018, 180, 321–335. [Google Scholar] [CrossRef]
- Nelson, D.R.; Adger, W.N.; Brown, K. Adaptation to Environmental Change: Contributions of a Resilience Framework. Annu. Rev. Environ. Resour. 2007, 32, 395–419. [Google Scholar] [CrossRef]
- Hollnagel, E.; Paries, J.; Woods, D.D.; Wreathall, J. Resilience Engineering in Practice: A Guidebook; Ashgate Publishing Limited: Farnham, UK, 2011; ISBN 978-1-4094-1035-5. [Google Scholar]
- Haimes, Y.Y. On the definition of resilience in systems. Risk Anal. 2009, 29, 498–501. [Google Scholar] [CrossRef] [PubMed]
- Nan, C.; Sansavini, G. A quantitative method for assessing resilience of interdependent infrastructures. Reliab. Eng. Syst. Saf. 2017, 157, 35–53. [Google Scholar] [CrossRef]
- Gama Dessavre, D.; Ramirez-Marquez, J.E.; Barker, K. Multidimensional approach to complex system resilience analysis. Reliab. Eng. Syst. Saf. 2016, 149, 34–43. [Google Scholar] [CrossRef]
- Jamshidi, M. Systems of Systems Engineering: Principles and Applications, 1st ed.; Jamshidi, M., Ed.; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-1-4200-6589-3. [Google Scholar]
- Jamshidi, M. System Of Systems Engineering: Innovations for the 21st Century; Jamshidi, M., Ed.; WILEY: Hoboken, NJ, USA, 2009; ISBN 978-0-470-19590. [Google Scholar]
- Maier, J.; Eckert, C.; Clarkson, P. Model Granularity and Related Concepts. In Proceedings of the International Design Conference—Design 2016, Cavtat, Croatia, 16–19 May 2016; pp. 1327–1336. [Google Scholar]
- Maier, M. Art of Systems Architecting, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2000; ISBN 9780849304408. [Google Scholar]
- Inam, A.; Adamowski, J.; Halbe, J.; Prasher, S. Using causal loop diagrams for the initialization of stakeholder engagement in soil salinity management in agricultural watersheds in developing countries: A case study in the Rechna Doab watershed, Pakistan. J. Environ. Manag. 2015, 152, 251–267. [Google Scholar] [CrossRef] [PubMed]
- Binder, T.; Belyazid, S.; Haraldsson, H.V.; Svensson, M.G.; Kennedy, M.; Winch, G.W.; Langer, R.S.; Rowe, J.I.; Yanni, J.M. Developing System Dynamics Models from Causal Loop Diagrams. In Proceedings of the 22nd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2004. [Google Scholar]
- US Dept. of Defence/Office of the DoD CIO. Reference Architecture Description; US Department of Defense: Washington, DC, USA, 2010.
- Hause, M. The unified profile for DoDAF/MODAF (UPDM) enabling systems of systems on many levels. In Proceedings of the 2010 IEEE International Systems Conference, San Diego, CA, USA, 5–8 April 2010; pp. 426–431. [Google Scholar]
- Ibarra-zannatha, J.M.; Limón, R.C.; Hernandez, W.E.C.; Electronico, I.; Estefan, J.A.; Obaidat, M.S.; Boudriga, N.A.; van der Aalst, W.M.P.; Voorhoeve, M.; Page, E.H.; et al. Survey of Model-Based Systems Engineering (MBSE) Methodologies 2. Differentiating Methodologies from Processes, Methods, and Lifecycle Models. Environment 1994, 32, 397–438. [Google Scholar]
- Piaszczyk, C. Model Based Systems Engineering with Department of Defense Architectural Framework. Syst. Eng. 2011, 14, 305–326. [Google Scholar] [CrossRef]
- Kalawsky, R.S.; O’Brien, J.; Chong, S.; Wong, C.; Jia, H.; Pan, H.; Moore, P.R. Bridging the gaps in a model-based system engineering workflow by encompassing hardware-in-the-loop simulation. IEEE Syst. J. 2013, 7, 593–605. [Google Scholar] [CrossRef]
- Ricci, N.; Fitzgerald, M.E.; Ross, A.M.; Rhodes, D.H. Architecting systems of systems with ilities: An overview of the SAI method. Procedia Comput. Sci. 2014, 28, 322–331. [Google Scholar] [CrossRef]
- Ross, A.M.; Rhodes, D.H. Towards a prescriptive semantic basis for change-type ilities. Procedia Comput. Sci. 2015, 44, 443–453. [Google Scholar] [CrossRef]
- Blochwitz, T.; Otter, M.; Arnold, M.; Bausch, C.; Clauß, C.; Elmqvist, H.; Junghanns, A.; Mauss, J.; Monteiro, M.; Neidhold, T.; et al. The Functional Mockup Interface for Tool independent Exchange of Simulation Models. In Proceedings of the 8th International Modelica Conference, Dresden, Germany, 20–22 March 2011; pp. 173–184. [Google Scholar]
- Salzano, E.; Di Nardo, M.; Gallo, M.; Oropallo, E.; Santillo, L.C. The application of System Dynamics to industrial plants in the perspective of Process Resilience Engineering. Chem. Eng. Trans. 2014, 36, 457–462. [Google Scholar]
- Kalawsky, R.S.R.S.; Joannou, D.; Tian, Y.; Fayoumi, A. Using Architecture Patterns to Architect and Analyze Systems of Systems. Procedia Comput. Sci. 2013, 16, 283–292. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joannou, D.; Kalawsky, R.; Saravi, S.; Rivas Casado, M.; Fu, G.; Meng, F. A Model-Based Engineering Methodology and Architecture for Resilience in Systems-of-Systems: A Case of Water Supply Resilience to Flooding. Water 2019, 11, 496. https://doi.org/10.3390/w11030496
Joannou D, Kalawsky R, Saravi S, Rivas Casado M, Fu G, Meng F. A Model-Based Engineering Methodology and Architecture for Resilience in Systems-of-Systems: A Case of Water Supply Resilience to Flooding. Water. 2019; 11(3):496. https://doi.org/10.3390/w11030496
Chicago/Turabian StyleJoannou, Demetrios, Roy Kalawsky, Sara Saravi, Monica Rivas Casado, Guangtao Fu, and Fanlin Meng. 2019. "A Model-Based Engineering Methodology and Architecture for Resilience in Systems-of-Systems: A Case of Water Supply Resilience to Flooding" Water 11, no. 3: 496. https://doi.org/10.3390/w11030496
APA StyleJoannou, D., Kalawsky, R., Saravi, S., Rivas Casado, M., Fu, G., & Meng, F. (2019). A Model-Based Engineering Methodology and Architecture for Resilience in Systems-of-Systems: A Case of Water Supply Resilience to Flooding. Water, 11(3), 496. https://doi.org/10.3390/w11030496