The Buffer Capacity of Riparian Vegetation to Control Water Quality in Anthropogenic Catchments from a Legally Protected Area: A Critical View over the Brazilian New Forest Code
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Sites (Sub-Catchments)
2.3. Sampling and Analysis
2.3.1. Soils
2.3.2. Water
2.4. Thematic Maps and Statistical Treatment of Soil and Water Data
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Valle Junior, R.F.; Varandas, S.G.P.; Pacheco, F.A.L.; Pereira, V.R.; Santos, C.F.; Cortes, R.M.V.; Fernandes, L.F.S. Impacts of land use conflicts on riverine ecosystems. Land Use Policy 2015, 43, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.M.B.; Sanches Fernandes, L.F.; Varandas, S.G.P.; Pereira, M.G.; Sousa, R.; Teixeira, A.; Lopes-Lima, M.; Cortes, R.M.V.; Pacheco, F.A.L. Impacts of climate change and land-use scenarios on Margaritifera margaritifera, an environmental indicator and endangered species. Sci. Total Environ. 2015, 511, 477–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelstam, P.; Lazdinis, M. Tall herb sites as a guide for planning, maintenance and engineering of riparian continuous forest cover. Ecol. Eng. 2017, 103, 470–477. [Google Scholar] [CrossRef]
- Li, K.; Chi, G.; Wang, L.; Xie, Y.; Wang, X.; Fan, Z. Identifying the critical riparian buffer zone with the strongest linkage between landscape characteristics and surface water quality. Ecol. Indic. 2018, 93, 741–752. [Google Scholar] [CrossRef]
- Choi, J.Y. Establishment and management of riparian buffer zones in Han River basin, Korea. WIT Trans. Ecol. Environ. 1970, 48, 1–7. [Google Scholar]
- Tockner, K.; Ward, J.V. Biodiversity along riparian corridors. Large Rivers 1999, 115, 293–310. [Google Scholar] [CrossRef]
- Poiani, K.A.; Richter, B.D.; Anderson, M.G. Biodiversity conservation at multiple scales: Functional sites, landscapes, networks. Bioscience 2000, 50, 133–146. [Google Scholar] [CrossRef]
- Arscott, D.B.; Tockner, K.; van der Nat, D.; Ward, J.V. Aquatic habitat dynamics along a braided alpine river ecosystem (Tagliamento River, Northeast Italy). Ecosystems 2002, 5, 802–814. [Google Scholar] [CrossRef]
- Meleason, M.A.; Quinn, J.M. Influence of riparian buffer width on air temperature at Whangapoua Forest, Coromandel Peninsula, New Zealand. For. Ecol. Manag. 2004, 191, 365–371. [Google Scholar] [CrossRef]
- Dwire, K.A.; Lowrance, R.R. Riparian ecosystems and buffers-multiscale struture, function, and management Introduction. J. Am. Water Resour. Assoc. 2006, 42, 1–4. [Google Scholar] [CrossRef]
- Anderson, P.D.; Poage, N.J. The Density Management and Riparian Buffer Study: A large-scale silviculture experiment informing riparian management in the Pacific Northwest, USA. For. Ecol. Manag. 2014, 316, 90–99. [Google Scholar] [CrossRef]
- Phoebus, I.; Segelbacher, G.; Stenhouse, G.B. Do large carnivores use riparian zones? Ecological implications for forest management. For. Ecol. Manag. 2017, 402, 157–165. [Google Scholar] [CrossRef]
- Nelson, J.L.; Hunt, L.G.; Lewis, M.T.; Hamby, K.A.; Hooks, C.R.; Dively, G.P. Arthropod communities in warm and cool grass riparian buffers and their influence on natural enemies in adjacent crops. Agric. Ecosyst. Environ. 2018, 257, 81–91. [Google Scholar] [CrossRef]
- Rosot, M.A.; Maran, J.C.; da Luz, N.B.; Garrastazú, M.C.; de Oliveira, Y.M.; Franciscon, L.; Clerici, N.; Vogt, P.; de Freitas, J.V. Riparian forest corridors: A prioritization analysis to the Landscape Sample Units of the Brazilian National Forest Inventory. Ecol. Indic. 2018, 93, 501–511. [Google Scholar] [CrossRef]
- Shirley, S.M.; Smith, J.N. Bird community structure across riparian buffer strips of varying width in a coastal temperate forest. Biol. Conserv. 2005, 125, 475–489. [Google Scholar] [CrossRef]
- Awade, M.; Metzger, J.P. Using gap-crossing capacity to evaluate functional connectivity of two Atlantic rainforest birds and their response to fragmentation. Austral Ecol. 2008, 33, 863–871. [Google Scholar] [CrossRef]
- Fierro, P.; Bertrán, C.; Tapia, J.; Hauenstein, E.; Peña-Cortés, F.; Vergara, C.; Cerna, C.; Vargas-Chacoff, L. Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. Sci. Total Environ. 2017, 609, 724–734. [Google Scholar] [CrossRef] [PubMed]
- De Mello, K.; Valente, R.A.; Randhir, T.O.; Dos Santos, A.C.A.; Vettorazzi, C.A. Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: Watershed versus riparian zone. Catena 2018, 167, 130–138. [Google Scholar] [CrossRef]
- Hénault-Ethier, L.; Larocque, M.; Perron, R.; Wiseman, N.; Labrecque, M. Hydrological heterogeneity in agricultural riparian buffer strips. J. Hydrol. 2017, 546, 276–288. [Google Scholar] [CrossRef]
- Clinton, B.D. Stream water responses to timber harvest: Riparian buffer width effectiveness. For. Ecol. Manag. 2011, 261, 979–988. [Google Scholar] [CrossRef]
- Yang, S.; Bai, J.; Zhao, C.; Lou, H.; Zhang, C.; Guan, Y.; Zhang, Y.; Wang, Z.; Yu, X. The assessment of the changes of biomass and riparian buffer width in the terminal reservoir under the impact of the South-to-North water diversion project in China. Ecol. Indic. 2018, 85, 932–943. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Dong, R.; Jiang, C.; Ni, M. Influences of land use metrics at multi-spatial scales on seasonal water quality: A case study of river systems in the Three Gorges Reservoir Area, China. J. Clean. Prod. 2019, 206, 76–85. [Google Scholar] [CrossRef]
- Brasil, 2012. Lei No. 12.651, de 25 de maio de 2012. Dispõe sobre a proteção da vegetação nativa; altera as Leis Nos. 6.938, de 31 de agosto de 1981, 9.393, de 19 de dezembro de 1996, e 11.428, de 22 de dezembro de 2006; revoga as Leis Nos. 4.771, de 15 de setembro de 1965, e 7.754, de 14 de abril de 1989, e a Medida Provisória No. 2.166-67, de 24 de agosto de 2001; e dá outras providências. Diário Oficial da República Federativa do Brasil, Poder Executivo, Brasília, DF, 28 maio 2012. Available online: www.planalto.gov.br (accessed on 26 September 2018).
- Chan, K.M.; Anderson, E.; Chapman, M.; Jespersen, K.; Olmsted, P. Payments for ecosystem services: Rife with problems and potential—For transformation towards sustainability. Ecol. Econ. 2017, 140, 110–122. [Google Scholar] [CrossRef]
- Villeneuve, B.; Piffady, J.; Valette, L.; Souchon, Y.; Usseglio-Polatera, P. Direct and indirect effects of multiple stressors on stream invertebrates across watershed, reach and site scales: A structural equation modelling better informing on hydromorphological impacts. Sci. Total Environ. 2018, 612, 660–671. [Google Scholar] [CrossRef] [PubMed]
- Brasil, 1965. Lei No. 4.771, de 15 de setembro de 1965. Institui o novo Código Florestal. Diário Oficial da República Federativa do Brasil, Poder Executivo, Brasília, DF, 16 set. 1965. Seção 1. p. 9529. Available online: www.planalto.gov.br (accessed on 26 September 2018).
- Quintão, D.A.; Caxito, F.D.; Karfunkel, J.; Vieira, F.R.; Seer, H.J.; Moraes, L.C.; Ribeiro, L.C.; Pedrosa-Soares, A.C. Geochemistry and sedimentary provenance of the Upper Cretaceous Uberaba Formation (Southeastern Triângulo Mineiro, MG, Brazil). Braz. J. Geol. 2017, 47, 159–182. [Google Scholar] [CrossRef] [Green Version]
- Brasil, 2014 Conama. Conselho Nacional Do Meio Ambiente. Resolução No. 344, de 25 de março de 2004. Estabelece as diretrizes gerais e procedimentos mínimos para avaliação do material a ser dragado em águas jurisdicionais brasileiras, e dá outras providências. Available online: http://www.suape.pe.gov.br (accessed on 26 September 2018).
- EMBRAPA (Empresa Brasileira De Pesquisa Agropecuária). Manual de métodos de análises de solo, 2nd ed.; Centro Nacional de Pesquisa de Solos: Rio de Janeiro, Brazil, 1997; 212p. [Google Scholar]
- De Ribeiro, I.V.A.S.; Bouchonneau, N.; Da Silva, A.C.; Fernandes, R.M.C.; De Pinheiro, L.S. Cálculo do índice de qualidade de água (IQA), com estudo de caso nos rios Cocó e Maranguapinho, Ceará. In Simpósio Brasileiro de Recursos Hídricos; Associação Brasileira de Recursos Hídricos: Campo Grande, Brazil, 2009; p. 18. [Google Scholar]
- ESRI (Environmental Systems Research Institute). ArcGIS Professional GIS for the Desktop; Versão 10; ESRI: Lisbon, Portugal, 2012. [Google Scholar]
- Pacheco, F.A.L. Regional groundwater flow in hard rocks. Sci. Total Environ. 2015, 506–507, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.R.; Sanches Fernandes, L.F.; Monteiro, S.M.; Fontainhas-Fernandes, A.; Pacheco, F.A.L. From catchment to fish: Impact of anthropogenic pressures on gill histopathology. Sci. Total Environ. 2016, 550, 972–986. [Google Scholar] [CrossRef]
- Pacheco, F.A.L. Application of correspondence analysis in the assessment of groundwater chemistry. Math. Geol. 1998, 30, 129–161. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Landim, P.M.B. Two-way regionalized classification of multivariate data sets and its application to the assessment of hydrodynamic dispersion. Math. Geol. 2005, 37, 393–417. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Van Der Weijden, C.H. Weathering of plagioclase across variable flow and solute transport regimes. J. Hydrol. 2012, 420–421, 46–58. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Van Der Weijden, C.H. Integrating Topography, Hydrology and Rock Structure in Weathering Rate Models of Spring Watersheds. J. Hydrol. 2012, 428–429, 32–50. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Van Der Weijden, C.H. Role of hydraulic diffusivity in the decrease of weathering rates over time. J. Hydrol. 2014, 512, 87–106. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Van Der Weijden, C.H. Modeling rock weathering in small watersheds. J. Hydrol. 2014, 513C, 13–27. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Alencoão, A.M.P. Role of fractures in weathering of solid rocks: Narrowing the gap between experimental and natural weathering rates. J. Hydrol. 2006, 316, 248–265. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Sousa Oliveira, A.; Van Der Weijden, A.J.; Van Der Weijden, C.H. Weathering, biomass production and groundwater chemistry in an area of dominant anthropogenic influence, the Chaves-Vila Pouca de Aguiar region, north of Portugal. Water Air Soil Pollut. 1999, 115, 481–512. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Van Der Weijden, C.H. Mineral weathering rates calculated from spring water data: A case study in an area with intensive agriculture, the Morais massif, NE Portugal. Appl. Geochem. 2002, 17, 583–603. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Szocs, T. “Dedolomitization Reactions” driven by anthropogenic activity on loessy Sediments, SW Hungary. Appl. Geochem. 2006, 21, 614–631. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Landim, P.M.B.; Szocs, T. Anthropogenic impacts on mineral weathering: A statistical perspective. Appl. Geochem. 2013, 36, 34–48. [Google Scholar] [CrossRef]
- Ferreira, A.R.L.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Pacheco, F.A.L. Assessing anthropogenic impacts on riverine ecosystems using nested partial least squares regression. Sci. Total Environ. 2017, 583, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Sanches Fernandes, L.F.; Fernandes, A.C.P.; Ferreira, A.R.L.; Cortes, R.M.V.; Pacheco, F.A.L. A partial least squares—Path modeling analysis for the understanding of biodiversity loss in rural and urban watersheds in Portugal. Sci. Total Environ. 2018, 626, 1069–1085. [Google Scholar] [CrossRef]
- GAEMA—Grupo de Atuação Especial de Defesa do Meio Ambiente. Função ecológica é a operação pela qual os elementos bióticos e abióticos que compõem determinado meio contribuem, em sua interação, para a manutenção do equilíbrio ecológico e para a sustentabilidade dos processos evolutivos; Technical Report; Ministério Público do Estado de São Paulo: São Paulo, Brasil, 2012.
- Pacheco, F.A.L.; Sanches Fernandes, L.F. Environmental land use conflicts in catchments: A major cause of amplified nitrate in river water. Sci. Total Environ. 2016, 548–549, 173–188. [Google Scholar] [CrossRef] [PubMed]
- Valle Junior, R.F.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Groundwater quality in rural watersheds with environmental land use conflicts. Sci. Total Environ. 2014, 493, 812–827. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, F.A.L.; Santos, R.M.B.; Sanches Fernandes, L.F.; Pereira, M.G.; Cortes, R.M.V. Controls and forecasts of nitrate fluxes in forested watersheds: A view over mainland Portugal. Sci. Total Environ. 2015, 537, 421–440. [Google Scholar] [CrossRef]
- Santos, R.M.B.; Sanches Fernandes, L.F.; Pereira, M.G.; Cortes, R.M.V.; Pacheco, F.A.L. A framework model for investigating the export of phosphorus to surface waters in forested watersheds: Implications to management. Sci. Total Environ. 2015, 536, 295–305. [Google Scholar] [CrossRef]
- Sanches Fernandes, L.F.; Marques, M.J.; Oliveira, P.C.; Moura, J.P. Decision support systems inwater resources in the demarcated region of Douro—Case study in Pinhão River Basin, Portugal. Water Environ. J. 2014, 28, 350–357. [Google Scholar]
- Sanches Fernandes, L.F.; Santos, C.; Pereira, A.; Moura, J. Model of management and decision support systems in the distribution of water for consumption: Case study in North Portugal. Eur. J. Environ. Civ. Eng. 2011, 15, 411–426. [Google Scholar] [CrossRef]
- Santos, R.M.B.; Sanches Fernandes, L.F.; Pereira, M.G.; Cortes, R.M.V.; Pacheco, F.A.L. Water resources planning for a river basin with recurrent wildfires. Sci. Total Environ. 2015, 526, 1–13. [Google Scholar] [CrossRef]
- Terêncio, D.P.S.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Pacheco, F.A.L. Improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses. J. Hydrol. 2017, 550, 318–330. [Google Scholar] [CrossRef]
- Terêncio, D.P.S.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Moura, J.P.; Pacheco, F.A.L. Rainwater harvesting in catchments for agro-forestry uses: A study focused on the balance between sustainability values and storage capacity. Sci. Total Environ. 2018, 613–614, 1079–1092. [Google Scholar] [CrossRef]
- Valle Junior, R.F.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Multi Criteria Analysis for the monitoring of aquifer vulnerability: A scientific tool in environmental policy. Environ. Sci. Policy 2015, 48, 250–264. [Google Scholar] [CrossRef] [Green Version]
- Valera, C.A.; Pissarra, T.C.T.; Martins Filho, M.V.; Valle Junior, R.F.; Sanches Fernandes, L.F.; Pacheco, F.A.L. A legal framework with scientific basis for applying the ‘polluter pays principle’ to soil conservation in rural watersheds in Brazil. Land Use Policy 2017, 66, 61–71. [Google Scholar] [CrossRef]
Water Sampling Date | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2016 | 2017 | |||||||||||
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Jan |
Day | 19 | 16 | 15 | 19 | 17 | 21 | 19 | 16 | 20 | 18 | 15 | 20 | 17 |
Rainfall (mm) | |||||||||||||
Day | 2.0 | 5.9 | 4.0 | 2.4 | 0.5 | 0.2 | 0.0 | 0.8 | 0.1 | 3.7 | 1.9 | 2.3 | 10.9 |
Day-1 | 8.0 | 8.7 | 5.5 | 1.2 | 2.8 | 0.0 | 0.0 | 0.0 | 0.7 | 4.7 | 13.9 | 2.6 | 27.0 |
Day-2 | 3.4 | 2.9 | 2.3 | 0.9 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 4.9 | 32.4 | 5.0 | 10.0 |
Day-3 | 16.6 | 2.8 | 6.3 | 3.7 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 8.4 | 1.4 | 4.4 |
Parameter | pH | Al3+ | Ca | Mg | H+Al | SB | t | T | K | P | V | m | SOM | OC | Sand | Silt | Clay | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | cmolc dm−3 | mg dm−3 | % | dag kg−1 | % | ||||||||||||||
April | |||||||||||||||||||
CM1 | 5.7 | 0.4 | 2.7 | 1.1 | 5.7 | 4.1 | 4.6 | 9.8 | 93.6 | 5.4 | 40.1 | 17.4 | 3.0 | 1.8 | 44.5 | 24.9 | 30.6 | ||
CM2 | 5.6 | 0.5 | 1.0 | 0.3 | 4.6 | 1.4 | 1.9 | 6.0 | 41.5 | 9.8 | 25.9 | 32.0 | 4.9 | 2.9 | 63.7 | 23.8 | 12.5 | ||
Ln | 5.8 | 0.6 | 2.2 | 0.9 | 4.5 | 3.2 | 3.8 | 7.7 | 54.6 | 2.8 | 43.4 | 17.3 | 3.1 | 1.8 | 60.5 | 23.4 | 16.1 | ||
November | |||||||||||||||||||
CM1 | 5.7 | 0.4 | 2.7 | 1.1 | 5.7 | 4.1 | 4.6 | 9.8 | 93.6 | 5.4 | 40.1 | 17.4 | 3.0 | 1.8 | 44.5 | 24.9 | 30.6 | ||
CM2 | 5.6 | 0.5 | 1.0 | 0.3 | 4.6 | 1.4 | 1.9 | 6.0 | 41.5 | 9.8 | 25.9 | 32.0 | 4.9 | 2.9 | 63.7 | 23.8 | 12.5 | ||
CLn | 5.8 | 0.6 | 2.2 | 0.9 | 4.5 | 3.2 | 3.8 | 7.7 | 54.6 | 2.8 | 43.4 | 17.3 | 3.1 | 1.8 | 60.5 | 23.4 | 16.1 |
Sub-Basin | Mangabeira 1 | Mangabeira 2 | Lanhoso |
---|---|---|---|
CM1 (15 m) | CM2 (30 m) | CLn (50 m) | |
T (°C) | 19.04 | 20.08 | 19.67 |
±2.6 | ±2.3 | ±2.6 | |
d | bc | cd | |
pH | 7.10 | 7.00 | 7.43 |
±0.5 | ±0.5 | ±0.4 | |
b | b | a | |
ORP (mV) | 140.12 | 153.24 | 204.68 |
±34.9 | ±43.2 | ±74.6 | |
cd | bc | a | |
Ec (μS/cm) | 60 | 70 | 90 |
±20 | ±20 | ±30 | |
bc | b | a | |
Turbidity (NTU) | 6.25 | 3.75 | 2.03 |
±6.1 | ±2.9 | ±2.0 | |
cd | d | d | |
DO (mg/L) | 7.64 | 7.32 | 11.58 |
±1.3 | ±1.6 | ±11.3 | |
b | b | a | |
PDO (%) | 84.72 | 83.23 | 124.81 |
±14.4 | ±18.7 | ±111.01 | |
b | b | a | |
TDS (mg/L) | 40 | 50 | 60 |
±10 | ±11 | ±19 | |
bc | b | a |
Sub-Basin | Buffer Width (m) | Sugar Cane—SC (%) | Native Forest—NF (%) | NF/SC | IWQ | Water Quality |
---|---|---|---|---|---|---|
CM1 | 15 | 49.4 | 36.1 | 0.7 | 30.8 | Poor |
CM2 | 30 | 39.5 | 30.9 | 0.8 | 31.0 | Poor |
CLn | 50 | 34.2 | 53.1 | 1.6 | 33.4 | Poor |
Water Quality | IWQ | Riparian Buffer Width—BW (m) | ||
---|---|---|---|---|
NF/SC = 0.7 | NF/SC = 1.6 | NF/SC = 3.2 | ||
Poor | 19–36 | 15–205 | 15–90 | 15–45 |
Regular | 36–51 | 205–300 | 90–300 | 45–155 |
Good | 51–79 | nd | nd | 155–300 |
Excellent | 79–100 | nd | nd | nd |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valera, C.A.; Pissarra, T.C.T.; Filho, M.V.M.; Valle Júnior, R.F.d.; Oliveira, C.F.; Moura, J.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. The Buffer Capacity of Riparian Vegetation to Control Water Quality in Anthropogenic Catchments from a Legally Protected Area: A Critical View over the Brazilian New Forest Code. Water 2019, 11, 549. https://doi.org/10.3390/w11030549
Valera CA, Pissarra TCT, Filho MVM, Valle Júnior RFd, Oliveira CF, Moura JP, Sanches Fernandes LF, Pacheco FAL. The Buffer Capacity of Riparian Vegetation to Control Water Quality in Anthropogenic Catchments from a Legally Protected Area: A Critical View over the Brazilian New Forest Code. Water. 2019; 11(3):549. https://doi.org/10.3390/w11030549
Chicago/Turabian StyleValera, Carlos Alberto, Teresa Cristina Tarlé Pissarra, Marcílio Vieira Martins Filho, Renato Farias do Valle Júnior, Caroline Fávaro Oliveira, João Paulo Moura, Luís Filipe Sanches Fernandes, and Fernando António Leal Pacheco. 2019. "The Buffer Capacity of Riparian Vegetation to Control Water Quality in Anthropogenic Catchments from a Legally Protected Area: A Critical View over the Brazilian New Forest Code" Water 11, no. 3: 549. https://doi.org/10.3390/w11030549
APA StyleValera, C. A., Pissarra, T. C. T., Filho, M. V. M., Valle Júnior, R. F. d., Oliveira, C. F., Moura, J. P., Sanches Fernandes, L. F., & Pacheco, F. A. L. (2019). The Buffer Capacity of Riparian Vegetation to Control Water Quality in Anthropogenic Catchments from a Legally Protected Area: A Critical View over the Brazilian New Forest Code. Water, 11(3), 549. https://doi.org/10.3390/w11030549