Effects of Drought Stress on Biomass, Essential Oil Content, Nutritional Parameters, and Costs of Production in Six Lamiaceae Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Growth Conditions
2.2. Experimental Design and Irrigation Treatments
2.3. Biomass, Water Content, and Essential Oil Content Determinations
2.4. Leaf Nutrient Concentration
2.5. Economic Analysis
2.6. Statistical Analysis
3. Results
3.1. Biomass, Water Content, and Essential Oil Content Determinations
3.2. Aerial Part Nutrient Concentration
3.3. Economic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DW | Dry weight |
EC | Electrical conductivity |
ETo | Evapotranspiration demand |
FW | Fresh weight |
K | Potassium |
MD | Medium drought |
N | Nitrogen |
P | Phosphorous |
R | Rainfall |
SD | Severe drought |
References
- Hassan, F.A.S.; Ali, E.F. Impact of different water regimes based on class—A pan on growth, yield and oil content of Coriandrum sativum L. plant. J. Saudi Soc. Agric. Sci. 2014, 13, 155–161. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.L.; Waskom, R.M.; Niu, Y.; Siddique, K.H. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2016, 36, 3. [Google Scholar] [CrossRef]
- Tardieu, F.; Simonneau, T.; Muller, B. The physiological basis of drought tolerance in crop plants: A scenario-dependent probabilistic approach. Ann. Rev. Plant Biol. 2018, 69, 733–759. [Google Scholar] [CrossRef] [PubMed]
- Kleinwächter, M.; Paulsen, J.; Bloem, E.; Schnug, E.; Selmar, D. Moderate drought and signal transducer induced biosynthesis of relevant secondary metabolites in thyme (Thymus vulgaris), greater celandine (Chelidonium majus) and parsley (Petroselinum crispum). Ind. Crops Prod. 2015, 64, 158–166. [Google Scholar] [CrossRef]
- Khorasaninejad, S.; Mousavi, A.; Soltanloo, H.; Hemmati, K.; Khalighi, A. The effect of drought stress on growth parameters, essential oil yield and constituent of peppermint (Mentha piperita L.). J. Med. Plants Res. 2011, 5, 5360–5365. [Google Scholar]
- Nowak, M.; Kleinwachter, M.; Manderscheid, R.; Weigel, H.J.; Selmar, D. Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis), an effect that is compensated by elevated carbon dioxide concentration. J. Appl. Bot. Food Qual. 2010, 83, 133–136. [Google Scholar]
- Usano-Alemany, J.; Palá-Paúl, J.; Herráiz-Peñalver, D. Temperature stress causes different profiles of volatile compounds in two chemotypes of Salvia lavandulifolia Vahl. Biochem. Syst. Ecol. 2014, 54, 166–171. [Google Scholar] [CrossRef]
- Herraiz-Peñalver, D.; Cases, M.A.; Varela, F.; Navarrete, P.; Sánchez-Vioque, R.; Usano-Alemany, J. Chemical characterization of Lavandula latifolia Medik. essential oil from Spanish wild populations. Biochem. Syst. Ecol. 2013, 46, 59–68. [Google Scholar] [CrossRef]
- Rodrigues, N.; Malheiro, R.; Casal, S.; Manzanera, M.C.A.S.; Bento, A.; Pereira, J.A. Influence of spike lavender (Lavandula latifolia Med.) essential oil in the quality, stability and composition of soybean oil during microwave heating. Food Chem. Toxicol. 2012, 50, 2894–2901. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Efficacy of Mentha piperita and Mentha citrata essential oils against housefly, Musca domestica L. Ind. Crops Prod. 2012, 39, 106–112. [Google Scholar] [CrossRef]
- Singh, R.; Shushni, M.A.; Belkheir, A. Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem. 2015, 8, 322–328. [Google Scholar] [CrossRef]
- Santoro, M.V.; Zygadlo, J.; Giordano, W.; Banchio, E. Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol. Biochem. 2011, 49, 1177–1182. [Google Scholar] [CrossRef]
- Herraiz-Peñalver, D.; Usano-Alemany, J.; Cuadrado, J.; Jordan, M.J.; Lax, V.; Sotomayor, J.A.; Palá-Paúl, J. Essential oil composition of wild populations of Salvia lavandulifolia Vahl. from Castilla-La Mancha (Spain). Biochem. Syst. Ecol. 2010, 38, 1224–1230. [Google Scholar] [CrossRef]
- Ihsan, S.A.; Wang, M.; Zaki, A.A.; Khan, S.I.; Khan, I.A. Chemical analysis and biological activities of Salvia lavandulifolia Vahl. essential oil. Chem. Anal. 2017, 7, 71–78. [Google Scholar]
- Porres-Martínez, M.; González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Influence of phenological stage on chemical composition and antioxidant activity of Salvia lavandulifolia Vahl. essential oils. Ind. Crops Prod. 2014, 53, 71–77. [Google Scholar] [CrossRef]
- Porres-Martínez, M.; González-Burgos, E.; Accame, M.E.C.; Gómez-Serranillos, M.P. Phytochemical composition, antioxidant and cytoprotective activities of essential oil of Salvia lavandulifolia Vahl. Food Res. Int. 2013, 54, 523–531. [Google Scholar] [CrossRef]
- Yaseen, M.; Kumar, B.; Ram, D.; Singh, M.; Anand, S.; Yadav, H.K.; Samad, A. Agro morphological, chemical and genetic variability studies for yield assessment in clary sage (Salvia sclarea L.). Ind. Crops Prod. 2015, 77, 640–647. [Google Scholar] [CrossRef]
- Verma, R.S. Chemical investigation of decanted and hydrophilic fractions of Salvia sclarea essential oil. Asian J. Tradit. Med. 2010, 5, 102–108. [Google Scholar]
- Taarit, M.B.; Msaada, K.; Hosni, K.; Marzouk, B. Fatty acids, phenolic changes and antioxidant activity of clary sage (Salvia sclarea L.) rosette leaves grown under saline conditions. Ind. Crops Prod. 2012, 38, 58–63. [Google Scholar] [CrossRef]
- Ali, I.B.E.H.; Guetat, A.; Boussaid, M. A combined approach using allozymes and volatiles for the characterization of Tunisian Thymbra capitata (L.) Cav. (Lamiaceae). Ind. Crops Prod. 2013, 43, 477–483. [Google Scholar]
- Jaounadi, R.; Cardoso, S.M.; Silva, A.M.; Yahia, I.B.H.; Boussaid, M.; Zaouali, Y. Variation of phenolic constituents of Tunisian Thymus capitatus (L.) Hoff. et Link. populations. Biochem. Syst. Ecol. 2018, 77, 10–15. [Google Scholar] [CrossRef]
- Blanco, J.; García, D.; Ruiz, T.; Vázquez, F.M. Successful practices for Thymbra capitata (L.) Cav. staking. Wulfenia J. 2014, 21, 27–35. [Google Scholar]
- Méndez-Tovar, I.; Sponza, S.; Asensio-S-Manzanera, M.C.; Novak, J. Contribution of the main polyphenols of Thymus mastichina subsp. mastichina to its antioxidant properties. Ind. Crops Prod. 2015, 66, 291–298. [Google Scholar] [CrossRef]
- Cutillas, A.B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Thymus mastichina L. essential oils from Murcia (Spain): Composition and antioxidant, antienzymatic and antimicrobial bioactivities. PLoS ONE 2018, 13, e0190790. [Google Scholar] [CrossRef] [PubMed]
- Delgado, T.; Marinero, P.; Manzanera, M.C.A.S.; Asensio, C.; Herrero, B.; Pereira, J.A.; Ramalhosa, E. Antioxidant activity of twenty wild Spanish Thymus mastichina L. populations and its relation with their chemical composition. LWT-Food Sci. Technol. 2014, 57, 412–418. [Google Scholar] [CrossRef]
- Garcia-Caparros, P.; Contreras, J.; Baeza, R.; Segura, M.; Lao, M.T. Integral management of irrigation water in intensive horticultural systems of Almería. Sustainability 2017, 9, 2271. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Estudio FAO Riego y Drenaje 56. In Evapotranspiración del Cultivo; FAO: Roma, Italy, 2006; 298p. [Google Scholar]
- Corell, M.; García, M.C.; Contreras, J.I.; Segura, M.L.; Cermeño, P. Effect of water stress on Salvia officinalis L. bioproductivity and its bioelement concentrations. Commun. Soil Sci. Plant Anal. 2012, 43, 419–425. [Google Scholar] [CrossRef]
- Csáky, A.; Martínez-Grau, M.A. Técnicas Experimentales en Síntesis Orgánica; Síntesis: Madrid, Spain, 1998. [Google Scholar]
- Krom, M.D. Spectrophotometric determination of ammonia: Study of a modified Berthelot reaction using salicylate and dicholoroisocyanurate. Analyst 1980, 105, 305–316. [Google Scholar] [CrossRef]
- Hogue, E.; Wilcow, G.E.; Cantliffe, D.J. Effect of soil P on phosphate fraction in tomato leaves. J. Am. Soc. Hortic. Sci. 1970, 95, 174–176. [Google Scholar]
- Lachica, M.; Aguilar, A.; Yanez, J. Análisis foliar: Métodos utilizados en la estación experimental del Zaidín. Anal. Edafol. Agrobiol. 1973, 32, 1033–1047. [Google Scholar]
- Nakawuka, P.; Peters, T.R.; Kenny, S.; Walsh, D. Effect of deficit irrigation on yield quantity and quality, water productivity and economic returns of four cultivars of hops in the Yakima Valley, Washington State. Ind. Crops Prod. 2017, 98, 82–92. [Google Scholar] [CrossRef]
- Blum, A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017, 40, 4–10. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Wang, D.; Zou, Z.; Liang, Z. Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind. Crops Prod. 2011, 33, 84–88. [Google Scholar] [CrossRef]
- Ekren, S.; Sönmez, Ç.; Özçakal, E.; Kurttaş, Y.S.K.; Bayram, E.; Gürgülü, H. The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.). Agric. Water Manag. 2012, 109, 155–161. [Google Scholar] [CrossRef]
- Bettaieb, I.; Zakhama, N.; Wannes, W.A.; Kchouk, M.E.; Marzouk, B. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci. Hortic. 2009, 120, 271–275. [Google Scholar] [CrossRef]
- Delfine, S.; Loreto, F.; Pinelli, P.; Tognetti, R.; Alvino, A. Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress. Agric. Ecosyst. Environ. 2005, 106, 243–252. [Google Scholar] [CrossRef]
- Govahi, M.; Ghalavand, A.; Nadjafi, F.; Sorooshzadeh, A. Comparing different soil fertility systems in Sage (Salvia officinalis) under water deficiency. Ind. Crops Prod. 2015, 74, 20–27. [Google Scholar] [CrossRef]
- Cermeño, P.; Romero, M.J. Efecto del estrés hídrico en la fase inicial del desarrollo de Salvia sclarea. Actas Hortic. 2014, 68, 233–238. (In Spanish) [Google Scholar]
- Bahreininejad, B.; Razmjoo, J.; Mirza, M. Influence of water stress on morpho-physiological and phytochemical traits in Thymus daenensis. Int. J. Plant Prod. 2013, 7, 155–166. [Google Scholar]
- Misra, A.; Sricastatva, N.K. Influence of water stress on Japanese mint. J. Herbs Spices Med. Plants 2000, 7, 51–58. [Google Scholar] [CrossRef]
- Singh, M.; Ramesh, S. Effect of irrigation and nitrogen on herbage, oil yield and water-use efficiency in rosemary grown under semi-arid tropical conditions. J. Med. Aromat. Plant Sci. 2000, 22, 659–662. [Google Scholar]
- Zehtab-Salmasi, S.; Javanshir, A.; Omidbaigi, R.; Aly-Ari, H.; Ghassemi-Golezani, K. Effects of water supply and sowing date on performance and essential oil production of anise (Pimpinella anisum L.). Acta Agron. Hung. 2001, 49, 75–81. [Google Scholar] [CrossRef]
- Baher, Z.F.; Mirza, M.; Ghorbanli, M.; Rezaii, M.B. The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour. Fragr. J. 2002, 17, 275–277. [Google Scholar] [CrossRef]
- Karamzadeh, S. Drought and production of second metabolites in medicinal and aromatic plants. Drought J. 2003, 7, 90–95, (In Persian, abstract in English). [Google Scholar]
- Osuagwu, G.G.E.; Edeoga, H.O.; Osuagwu, A.N. The influence of water stress (drought) on the mineral and vitamin potential of the leaves of Ocimum gratissimum (L). Recent Res. Sci. Technol. 2010, 2, 27–33. [Google Scholar]
- Farahani, H.A.; Valadabadi, S.A.; Daneshian, J.; Shiranirad, A.H.; Khalvati, M.A. Medicinal and aromatic plants farming under drought conditions. J. Hortic. For. 2009, 1, 86–92. [Google Scholar]
- Inclan, R.; Gimeno, B.S.; Dizenaremei, P.; Sanchez, M. Compensation processes of Aleppo pine (Pinus halepensis Mill) to ozone exposure and drought tress. Environ. Pollut. 2005, 137, 517–524. [Google Scholar] [CrossRef]
- Xu, Z.Z.; Zhou, G.S. Effects of water stress and high temperature on photosynthesis and nitrogen level of a perennial grass Leymu chinensis. Plant Soil 2005, 259, 131–139. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. In Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2009; pp. 153–188. [Google Scholar]
- Kizil, S.; Hasimi, N.; Tolan, V.; Kilinc, E.; Yuksel, U. Mineral content, essential oil components and biological activity of two mentha species (M. piperita L., M. spicata L.). Turk. J. Field Crops 2010, 15, 148–153. [Google Scholar]
- Khalid, K.A. Influence of water stress on growth, essential oil and chemical composition of herbs (Ocimum sp.). Int. Agrophys. 2006, 20, 289–296. [Google Scholar]
- Sarani, M.; Namrudi, M.; Hashemi, S.M.; Raoofi, M.M. The effect of drought stress on chlorophyll content, root growth, glucosinolate and proline in crop plants. Int. J. Farming Allied Sci. 2014, 3, 994–997. [Google Scholar]
Chemical Soil Properties | |
---|---|
Organic matter (%) | 0.51 |
EC (dS m−1) | 0.64 |
pH | 8.76 |
Available nutrients | |
N-NO3− (ppm) | 30.50 |
N-NH4+ (ppm) | 0.12 |
P (ppm) | 45.53 |
K (mg kg−1 soil) | 175.00 |
Ca (mg kg−1 soil) | 1892.00 |
Mg (mg kg−1 soil) | 281.00 |
pH | EC (dS m−1) | mmolc L−1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CO32− | HCO3− | Cl− | SO42− | NO3− | H2PO4− | NH4+ | Ca2+ | Mg2+ | Na+ | K+ | ||
8.02 | 0.64 | 0.20 | 3.30 | 1.17 | 1.09 | 0.07 | 0.00 | 0.00 | 2.09 | 3.40 | 1.03 | 1.02 |
Year | Month | R (L m−2) | ETo (L m−2) | I (L m−2) | ||
---|---|---|---|---|---|---|
100% | 70% | 100% | 70% | |||
2011 | July | 0.2 | 120.6 | 84.4 | 120.4 | 84.2 |
2011 | August | 0 | 180.5 | 126.3 | 180.5 | 126.3 |
2011 | September | 5 | 136.5 | 95.5 | 131.5 | 90.5 |
2011 | October | 29.6 | 90 | 63 | 60.4 | 33.4 |
2011 | November | 47.2 | 60.8 | 42.5 | 13.6 | 0.0 |
2011 | December | 2.4 | 42.5 | 29.7 | 40.1 | 22.6 |
2012 | January | 22.4 | 46.5 | 32.5 | 24.1 | 10.1 |
2012 | February | 8.6 | 64.7 | 45.2 | 56.1 | 36.6 |
2012 | March | 13 | 94.3 | 66.0 | 81.3 | 53 |
2012 | April | 9.4 | 125 | 87.5 | 115.6 | 78.1 |
2012 | May | 0.4 | 162.2 | 113.5 | 161.8 | 113.1 |
2012 | June | 3.4 | 172.2 | 120.5 | 168.8 | 117.1 |
Total | 142 | 1296 | 907 | 1154 | 765 |
Species | Treatments | FW (Kg m−2) | DW (Kg m−2) | % Water Content | Essential Oil Content (mL kg−1 DW) | Essential Oil Content (mL m−2) |
---|---|---|---|---|---|---|
L. latifolia | 100% | 1.41 ± 0.13 a | 0.50 ± 0.05 a | 64.91 ± 6.07 a | 28.49 ± 2.01 a | 14.19 ± 1.21 a |
70% | 0.84 ± 0.06 b | 0.34 ± 0.04 b | 59.99 ± 6.05 a | 26.69 ± 2.12 a | 9.09 ± 0.92 b | |
M. piperita | 100% | 1.26 ± 0.12 a | 0.33 ± 0.03 a | 77.49 ± 6.24 a | 22.18 ± 1.88 a | 7.28 ± 0.68 a |
70% | 0.92 ± 0.09 b | 0.30 ± 0.03 a | 65.19 ± 5.93 b | 21.34 ± 2.08 a | 6.54 ± 0.61 a | |
S. lavandulifolia | 100% | 0.57 ± 0.05 a | 0.15 ± 0.01 a | 73.40 ± 6.85 a | 24.14 ± 2.18 a | 3.62 ± 0.34 a |
70% | 0.63 ± 0.05 a | 0.16 ± 0.01 a | 74.44 ± 7.23 a | 24.75 ± 2.22 a | 3.86 ± 0.38 a | |
S. sclarea | 100% | 0.71 ± 0.07 a | 0.14 ± 0.01 a | 80.42 ± 8.11 a | 27.68 ± 2.42 a | 3.88 ± 0.36 a |
70% | 0.70 ± 0.07 a | 0.14 ± 0.01 a | 80.13 ± 7.80 a | 13.05 ± 1.14 b | 1.81 ± 0.17 b | |
T. capitatus | 100% | 1.57 ± 0.11 a | 0.53 ± 0.05 a | 66.34 ± 6.07 a | 46.36 ± 4.59 a | 24.57 ± 2.44 a |
70% | 1.08 ± 0.10 b | 0.50 ± 0.05 a | 53.64 ± 5.04 b | 44.65 ± 3.97 a | 22.32 ± 2.18 a | |
T. mastichina | 100% | 0.78 ± 0.06 a | 0.24 ± 0.02 a | 69.48 ± 6.65 a | 63.54 ± 6.17 a | 15.25 ± 1.41 a |
70% | 0.81 ± 0.07 a | 0.25 ± 0.02 a | 68.60 ± 6.58 a | 67.39 ± 6.41 a | 16.65 ± 1.48 a |
Species | Treatments | N | P | K |
---|---|---|---|---|
L. latifolia | 100% | 22.05 ± 2.01 a | 1.56 ± 0.07 a | 23.31 ± 2.01 a |
70% | 17.57 ± 1.61 b | 1.22 ± 0.05 b | 22.69 ± 2.12 a | |
M. piperita | 100% | 32.05 ± 2.98 a | 7.18 ± 0.53 a | 20.63 ± 1.88 a |
70% | 35.89 ± 3.12 a | 4.69 ± 0.24 b | 21.86 ± 2.08 a | |
S. lavandulifolia | 100% | 32.90 ± 3.06 a | 5.56 ± 0.35 a | 31.56 ± 3.18 a |
70% | 33.48 ± 2.92 a | 3.74 ± 0.23 b | 33.41 ± 3.22 a | |
S. sclarea | 100% | 26.51 ± 2.23 a | 5.04 ± 0.31 a | 35.68 ± 3.42 a |
70% | 28.19 ± 2.41 a | 4.93 ± 0.30 a | 33.59 ± 3.14 a | |
T. capitatus | 100% | 16.27 ± 1.39 a | 1.41 ± 0.07 a | 17.94 ± 1.59 a |
70% | 15.42 ± 1.31 a | 0.96 ± 0.04 b | 18.98 ± 1.67 a | |
T. mastichina | 100% | 29.84 ± 2.47 a | 5.68 ± 0.35 a | 23.51 ± 2.07 a |
70% | 23.83 ± 2.31 b | 4.52 ± 0.28 b | 22.89 ± 2.11 a |
Experimental Period | |
---|---|
Initial activity | |
Soil preparation | 110 |
Planting | |
• Vegetal material | 1286 |
• Planting activities | 567 |
Irrigation system | |
• Establishment | 2814 |
Total | 4777 |
Annual activities | |
• Repair and maintenance of irrigation system | 1015 |
Weeds | |
• Herbicide application | 180 |
• Weeding | 504 |
Fertilization | 217 |
Insecticide application | 80 |
Actual harvesting | 600 |
Transporting | 50 |
Residue disposal and packing | 500 |
Total | 3146 |
Other costs | |
Land rent | 600 |
Total | 8523 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Caparrós, P.; Romero, M.J.; Llanderal, A.; Cermeño, P.; Lao, M.T.; Segura, M.L. Effects of Drought Stress on Biomass, Essential Oil Content, Nutritional Parameters, and Costs of Production in Six Lamiaceae Species. Water 2019, 11, 573. https://doi.org/10.3390/w11030573
García-Caparrós P, Romero MJ, Llanderal A, Cermeño P, Lao MT, Segura ML. Effects of Drought Stress on Biomass, Essential Oil Content, Nutritional Parameters, and Costs of Production in Six Lamiaceae Species. Water. 2019; 11(3):573. https://doi.org/10.3390/w11030573
Chicago/Turabian StyleGarcía-Caparrós, Pedro, María José Romero, Alfonso Llanderal, Pedro Cermeño, María Teresa Lao, and María Luz Segura. 2019. "Effects of Drought Stress on Biomass, Essential Oil Content, Nutritional Parameters, and Costs of Production in Six Lamiaceae Species" Water 11, no. 3: 573. https://doi.org/10.3390/w11030573
APA StyleGarcía-Caparrós, P., Romero, M. J., Llanderal, A., Cermeño, P., Lao, M. T., & Segura, M. L. (2019). Effects of Drought Stress on Biomass, Essential Oil Content, Nutritional Parameters, and Costs of Production in Six Lamiaceae Species. Water, 11(3), 573. https://doi.org/10.3390/w11030573